Structure of Reef Fish Families (Butterflyfishes and Angelfishes) at Isolated Oceanic Reefs in the Indian Ocean: Christmas Island and the Cocos (Keeling) Islands
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Relative Abundances of Angelfishes and Butterflyfishes
3.2. Spatial Patterns of Species Richness
3.3. Spatial Patterns in Abundance
3.4. Spatial Patterns in Species Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, G.P. Post recruitment processes in the ecology of coral reef populations: A multifactorial perspective. In The Ecology of Fishes on Coral Reefs; Sale, P.F., Ed.; Academic Press: San Diego, CA, USA, 1991; pp. 294–328. [Google Scholar]
- Bellwood, D.R.; Hughes, T.P. Regional-scale assembly rules and biodiversity of coral reefs. Science 2001, 292, 1532–1534. [Google Scholar] [CrossRef] [PubMed]
- Depczynski, M.; Bellwood, D.R. Wave energy and spatial variability in community structure of small cryptic coral reef fishes. Mar. Ecol. Prog. Ser. 2005, 303, 283–293. [Google Scholar] [CrossRef]
- Fulton, C.J.; Bellwood, D.R.; Wainwright, P.C. Wave energy and swimming performance shape coral reef fish assemblages. Proc. Roy. Soc. Lond. B 2005, 272, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M. Depth distributions of coral reef fishes: The influence of microhabitat structure, settlement, and post-settlement processes. Oecologia 2003, 137, 76–84. [Google Scholar] [CrossRef]
- Hixon, M.A.; Jones, G.P. Competition, predation, and density-dependent mortality in demersal marine fishes. Ecology 2005, 86, 2847–2859. [Google Scholar] [CrossRef]
- Darling, E.S.; Graham, N.A.; Januchowski-Hartley, F.A.; Nash, K.L.; Pratchett, M.S.; Wilson, S.K. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 2017, 36, 561–575. [Google Scholar] [CrossRef]
- Munday, P.L.; Jones, G.P.; Caley, M.J. Habitat specialisation and the distribution and abundance of coral-dwelling gobies. Mar. Ecol. Prog. Ser. 1997, 152, 227–239. [Google Scholar] [CrossRef]
- Munday, P.L. Does habitat availability determine geographical-scale abundances of coral-dwelling fishes? Coral Reefs 2002, 21, 105–116. [Google Scholar] [CrossRef]
- Hixon, M.A. Predation as a process structuring coral reef fish communities. In The Ecology of Fishes on Coral Reefs; Sale, P.F., Ed.; Academic Press: San Diego, CA, USA, 1991; pp. 475–508. [Google Scholar]
- Almany, G.R.; Webster, M.S. Odd species out as predators reduce diversity of coral-reef fishes. Ecology 2004, 85, 2933–2937. [Google Scholar] [CrossRef]
- Robertson, D.R. Interspecific competition controls the abundance and habitat use of territorial Caribbean damselfishes. Ecology 1996, 77, 885–899. [Google Scholar] [CrossRef]
- Schmitt, R.J.; Holbrook, S.J. Settlement and recruitment of three damselfishes species: Larval delivery and competition for shelter space. Oecologia 1999, 118, 76–86. [Google Scholar] [CrossRef]
- Munday, P.L.; Jones, G.P.; Caley, M.J. Interspecific competition and coexistence in a guild of coral-dwelling fishes. Ecology 2001, 82, 2177–2189. [Google Scholar] [CrossRef]
- Bonin, M.C.; Boström-Einarsson, L.; Munday, P.L.; Jones, G.P. The prevalence and importance of competition among coral reef fishes. Ann. Rev. Ecol. Evol. Syst. 2015, 46, 169–190. [Google Scholar] [CrossRef]
- Doherty, P.J. Spatial and temporal patterns in recruitment. In The Ecology of Fishes on Coral Reefs; Sale, P.F., Ed.; Academic Press: San Diego, CA, USA, 1991; pp. 261–293. [Google Scholar]
- Doherty, P.J.; Williams, D.M. The replenishment of coral reef fish populations. Oceanogr. Mar. Biol. Ann. Rev. 1988, 26, 487–551. [Google Scholar]
- Randall, J.E. Zoogeography of shorefishes of the Indo-Pacific region. Zool. Stud. 1998, 37, 227–268. [Google Scholar]
- Bellwood, D.R.; Wainwright, P.W. The history and biogeography of fishes on coral reefs. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem; Sale, P.F., Ed.; Academic Press: San Diego, CA, USA, 2002; pp. 5–32. [Google Scholar]
- Renema, W.; Bellwood, D.R.; Braga, J.C.; Bromfield, K.; Hall, R.; Johnson, K.G.; Lunt, P.; Meyer, C.P.; McMonagle, L.B.; Morley, R.J.; et al. Hopping hotspots: Global shifts in marine biodiversity. Science 2008, 321, 654–657. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Parrish, J.D. Temporal dynamics of the fish assemblage on an exposed shoreline in Hawaii. Env. Biol. Fish. 1998, 53, 1–18. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Giddens, J.; Ballesteros, E.; Blum, S.; Brown, E.K.; Caselle, J.E.; Henning, B.; Jost, C.; Salinas-de-Leon, P.; Sala, E. (Marine biodiversity from zero to a thousand meters at Clipperton Atoll (Île de La Passion), Tropical Eastern Pacific. PeerJ 2019, 7, e7279. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Parrish, J.D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 1998, 224, 1–30. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Brown, E.K.; Jokiel, P.L.; Smith, W.R.; Rogers, K.S. Effects of habitat, wave exposure, and marine protected area status on coral reef fish assemblages in the Hawaiian archipelago. Coral Reefs 2003, 22, 91–305. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Ballesteros, E.; Caselle, J.E.; Gaymer, C.F.; Palma, A.T.; Petit, I.; Varas, E.; Wilson, A.M.; Sala, E. Marine Biodiversity in Juan Fernández and Desventuradas Islands, Chile. PLoS ONE 2016, 11, e0145059. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, J.-P.A.; Jones, G.P.; Munday, P.L. Extinction risk in endemic marine fishes. Cons. Biol. 2011, 25, 1053–1055. [Google Scholar] [CrossRef]
- Hobbs, J.-P.A.; Jones, G.P.; Munday, P.L.; Connolly, S.R.; Srinivasan, M. Biogeography and the structure of coral reef fish communities on isolated islands. J. Biogeogr. 2012, 39, 130–139. [Google Scholar] [CrossRef]
- Luiz, O.J.; Mendes, T.C.; Barneche, D.R.; Ferreira, C.G.; Noguchi, R.; Villaça, R.C.; Rangel, C.A.; Gasparini, J.L.; Ferreira, C.E. Community structure of reef fishes on a remote oceanic island (St Peter and St Paul’s Archipelago, equatorial Atlantic): The relative influence of abiotic and biotic variables. Mar. Freshw. Res. 2015, 66, 739–749. [Google Scholar] [CrossRef]
- Fernández-Cisternas, I.; Majlis, J.; Avila-Thieme, M.I.; Lamb, R.W.; Pérez-Matus, A. Endemic species dominate reef fish interaction networks on two isolated oceanic islands. Coral Reefs 2021, 40, 1081–1095. [Google Scholar] [CrossRef]
- Madin, J.S.; Connolly, S.R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 2006, 444, 447–480. [Google Scholar] [CrossRef]
- Purcell, S.W.; Bellwood, D.R. Spatial patterns of epilithic algal and detrital resources on a windward coral reef. Coral Reefs 2001, 20, 117–125. [Google Scholar] [CrossRef]
- Tuya, F.; Haroun, R.J. Spatial patterns and response to wave exposure of shallow water algal assemblages across the Canarian Archipelago: A multi-scaled approach. Mar. Ecol. Prog. Ser. 2006, 311, 15–28. [Google Scholar] [CrossRef]
- Hachich, N.F.; Bonsall, M.B.; Arraut, E.M.; Barneche, D.R.; Lewinsohn, T.M.; Floeter, S.R. Island biogeography: Patterns of marine shallow-water organisms in the Atlantic Ocean. J. Biogeog. 2015, 42, 1871–1882. [Google Scholar] [CrossRef]
- Pinheiro, H.T.; Bernardi, G.; Simon, T.; Joyeux, J.C.; Macieira, R.M.; Gasparini, J.L.; Rocha, C.; Rocha, L.A. Island biogeography of marine organisms. Nature 2017, 549, 82–85. [Google Scholar] [CrossRef]
- Gaither, M.R.; Bernal, M.A.; Coleman, R.R.; Bowen, B.W.; Jones, S.A.; Simison, W.B.; Rocha, L.A. Genomic signatures of geographic isolation and natural selection in coral reef fishes. Mol. Ecol. 2015, 24, 1543–1557. [Google Scholar] [CrossRef]
- Paulay, G.; Meyer, C.P. Dispersal and divergence across the greatest ocean region: Do larvae matter? Integr. Comp. Biol. 2006, 46, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Pandolfi, J.M.; Bradbury, R.H.; Sala, E.; Hughes, T.P.; Bjorndal, K.A.; Cooke, R.G.; McArdle, D.; McClenachan, L.; Newman, M.J.; Paredes, G.; et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 2003, 301, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.F.; Selig, S.E. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2007, 2, e711. [Google Scholar] [CrossRef]
- Hughes, T.P.; Baird, A.H.; Bellwood, D.R.; Card, M.; Connolly, S.R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J.B.; Kleypas, J.; et al. Climate change, human impacts, and the resilience of coral reefs. Science 2003, 301, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Bellwood, D.R.; Pratchett, M.S.; Morrison, T.H.; Gurney, G.G.; Hughes, T.P.; Álvarez-Romero, J.G.; Day, J.C.; Grantham, R.; Grech, A.; Hoey, A.S.; et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Cons. 2019, 236, 604–615. [Google Scholar] [CrossRef]
- Speed, C.W.; Babcock, R.C.; Bancroft, K.P.; Beckley, L.E.; Bellchambers, L.M.; Depczynski, M.; Field, S.N.; Friedman, K.J.; Gilmour, J.P.; Hobbs, J.P.A.; et al. Dynamic stability of coral reefs on the west Australian coast. PLoS ONE 2013, 8, e69863. [Google Scholar] [CrossRef]
- Zinke, J.; Gilmour, J.P.; Fisher, R.; Puotinen, M.; Maina, J.; Darling, E.; Stat, M.; Richards, Z.T.; McClanahan, T.R.; Beger, M.; et al. Gradients of disturbance and environmental conditions shape coral community structure for south-eastern Indian Ocean reefs. Divers. Dist. 2008, 24, 605–620. [Google Scholar] [CrossRef]
- Ortiz, J.C.; Wolff, N.H.; Anthony, K.R.; Devlin, M.; Lewis, S.; Mumby, P.J. Impaired recovery of the Great Barrier Reef under cumulative stress. Sci. Adv. 2018, 4, eaar6127. [Google Scholar] [CrossRef]
- Gilmour, J.P.; Smith, L.D.; Heyward, A.J.; Baird, A.H.; Pratchett, M.S. Recovery of an isolated coral reef system following severe disturbance. Science 2013, 340, 69–71. [Google Scholar] [CrossRef]
- Graham, N.A.J.; Nash, K.L.; Kool, J.T. Coral reef recovery dynamics in a changing world. Coral Reefs 2011, 30, 283–294. [Google Scholar] [CrossRef]
- Graham, N.A.; Wilson, S.K.; Jennings, S.; Polunin, N.V.; Bijoux, J.P.; Robinson, J. Dynamic fragility of oceanic coral reef ecosystems. Proc. Nat. Acad. Sci. USA 2006, 103, 8425–8429. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.P.; McCormick, M.I.; Srinivasan, M.; Eagle, J.V. Coral decline threatens fish biodiversity in marine reserves. Proc. Nat. Acad. Sci. USA 2004, 101, 8251–8253. [Google Scholar] [CrossRef] [PubMed]
- Bellwood, D.R.; Hoey, A.S.; Ackerman, J.L.; Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 2006, 12, 1587–1594. [Google Scholar] [CrossRef]
- Wilson, S.K.; Graham, N.A.J.; Pratchett, M.S.; Jones, G.P.; Polunin, N.V.C. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient? Glob. Change Biol. 2006, 12, 2220–2234. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Munday, P.L.; Wilson, S.K.; Graham, N.A.J.; Cinner, J.E.; Bellwood, D.R.; Jones, G.P.; Polunin, N.V.C.; McClanahan, T.R. Effects of climate-induced coral bleaching on coral-reef fishes: Ecological and economic consequences. Oceanogr. Mar. Biol. Ann. Rev. 2008, 46, 251–296. [Google Scholar]
- Brothers, E.B.; Thresher, R.E. Pelagic duration, dispersal and the distribution of Indo-Pacific coral reef fishes. In The Ecology of Coral Reefs; Reaka, M.L., Ed.; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1985. [Google Scholar]
- Brothers, E.B.; Williams, D.M.; Sale, P.F. Length of larval life in twelve families of fishes at One Tree Lagoon, Great Barrier Reef, Australia. Mar. Biol. 1983, 76, 319–324. [Google Scholar] [CrossRef]
- Thresher, R.E.; Brothers, E.B. Reproductive ecology and biogeography of Indo-west Pacific angelfishes (Pisces: Pomacanthidae). Evolution 1985, 39, 878–887. [Google Scholar] [CrossRef]
- Baraf, L.M.; Pratchett, M.S.; Cowman, P.F. Ancestral biogeography and ecology of marine angelfishes (F: Pomacanthidae). Mol. Phylogenet. Evol. 2019, 140, 106596. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Klanten, S.; Cowman, P.F.; Pratchett, M.S.; Konow, N.; van Herwerden, L. Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. J. Evol. Biol. 2010, 23, 335–349. [Google Scholar] [CrossRef]
- DiBattista, J.D.; Alfaro, M.E.; Sorenson, L.; Choat, J.H.; Hobbs, J.P.A.; Sinclair-Taylor, T.H.; Rocha, L.A.; Chang, J.; Luiz, O.J.; Cowman, P.F.; et al. Ice ages and butterflyfishes: Phylogenomics elucidates the ecological and evolutionary history of reef fishes in an endemism hotspot. Ecol. Evol. 2018, 8, 10989–11008. [Google Scholar] [CrossRef] [PubMed]
- Waldrop, E.; Hobbs, J.P.A.; Randall, J.E.; DiBattista, J.D.; Rocha, L.A.; Kosaki, R.K.; Berumen, M.L.; Bowen, B.W. Phylogeography, population structure and evolution of coral-eating butterflyfishes (Subgenus Corallochaetodon). J. Biogeogr. 2016, 43, 1116–1129. [Google Scholar] [CrossRef]
- Allen, G.R.; Steene, R.; Allen, M.A. Guide to Angelfishes and Butterflyfishes; Odyssey Publishing: Chicago, IL, USA, 1998. [Google Scholar]
- Pratchett, M.S. Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar. Biol. 2005, 148, 373–382. [Google Scholar] [CrossRef]
- Hobbs, J.P.A.; Jones, G.P.; Munday, P.L. Rarity and extinction risk in coral reef angelfishes on isolated islands: Interrelationships among abundance, geographic range size and specialization. Coral Reefs 2010, 29, 1–11. [Google Scholar] [CrossRef]
- Richards, Z.T.; Ryan, N.M.; Harvey, E.S.; Garcia, R.; Hobbs, J.P.A. Diversity on the edge: Non-linear patterns of coral community structure at an isolated oceanic island. Mar. Ecol. Prog. Ser. 2016, 546, 61–74. [Google Scholar] [CrossRef]
- Bakus, G.J. Quantitative Analysis of Marine Biological Communities: Field Biology and Environment; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Letourneur, Y.; Gaertner, J.C.; Durbec, J.P.; Jessu, M.E. Effects of geomorphological zones, reefs and seasons on coral reef fish communities of Réunion Island, Mascarene Archipelago, SW Indian Ocean. Estuar. Coast. Shelf. Sci. 2008, 77, 697–709. [Google Scholar] [CrossRef]
- Bouchon-Navaro, Y.; Bouchon, C. Correlation between chaetodontid fishes and coral communities of the Gulf of Aqaba Red Sea. Env. Biol. Fish. 1989, 25, 47–60. [Google Scholar] [CrossRef]
- Carpenter, K.E.; Miclat, R.I.; Albaladejo, V.D.; Corpuz, V.T. The influence of substrate structure on the local abundance and diversity of Philippine reef fishes. In Proceedings of the 4th International Coral Reef Symposium, Manila, Philippines, 18–22 May 1981; Volume 2, pp. 497–502. [Google Scholar]
- Cheal, A.J.; Wilson, S.K.; Emslie, M.J.; Dolman, A.M.; Sweatman, H. Responses of reef fish communities to coral declines on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 2008, 372, 211–223. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Wilson, S.K.; Baird, A.H. Declines in the abundance of Chaetodon butterflyfishes (Chaetodontidae) following extensive coral depletion. J. Fish. Biol. 2006, 69, 1269–1280. [Google Scholar] [CrossRef]
- Coleman, R.R.; Copus, J.M.; Coffey, D.M.; Whitton, R.K.; Bowen, B.W. Shifting reef fish assemblages along a depth gradient in Pohnpei, Micronesia. Peer J. 2018, 6, e4650. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, A.; Kosaki, R.K.; Wagner, D.; Kane, C. Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands. PLoS ONE 2016, 11, e0157861. [Google Scholar] [CrossRef] [PubMed]
- Lecchini, D.; Adjeroud, M.; Pratchett, M.S.; Cadoret, L.; Galzin, R. Spatial structure of coral reef fish communities in the Ryukyu Islands, southern Japan. Oceanol. Acta 2003, 26, 537–547. [Google Scholar] [CrossRef]
- Wagner, D.; Kosaki, R.K.; Spalding, H.L.; Whitton, R.K.; Pyle, R.L.; Sherwood, A.R.; Tsuda, R.T.; Calcinai, B. Mesophotic surveys of the flora and fauna at Johnston Atoll, Central Pacific Ocean. Mar. Biodivers. Rec. 2014, 7, e68. [Google Scholar] [CrossRef]
- Eagle, J.V.; Jones, G.P.; McCormick, M.I. A multi-scale study of the relationships between habitat use and the distribution and abundance patterns of three coral reef angelfishes (Pomacanthidae). Mar. Ecol. Prog. Ser. 2001, 214, 253–265. [Google Scholar] [CrossRef]
- MacDonald, C.; Bridge, T.C.L.; Jones, G.P. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge? Mar. Ecol. Prog. Ser. 2016, 561, 217–231. [Google Scholar] [CrossRef]
- Bridge, T.C.; Osmar, J.L.; Coleman, R.R.; Kane, C.N.; Kosaki, R.K. Ecological and morphological traits predict depth-generalist fishes on coral reefs. Proc. Roy. Soc. B 2016, 283, 20152332. [Google Scholar] [CrossRef]
- Hobbs, J.P.A.; Frisch, A.J. Coral disease in the Indian Ocean: Taxonomic susceptibility, spatial distribution and the role of host density on the prevalence of white syndrome. Dis. Aquat. Org. 2010, 89, 1–8. [Google Scholar] [CrossRef]
- Hobbs, J.P.A.; Frisch, A.J.; Newman, S.J.; Wakefield, C.B. Selective impact of disease on coral communities: Outbreak of white syndrome causes significant mortality of Acropora plate corals. PLoS ONE 2015, 10, e0132528. [Google Scholar] [CrossRef]
- Eagle, J.V.; Jones, G.P. Mimicry in coral reef fishes: Ecological and behavioural responses of a mimic to its model. J. Zool. 2004, 264, 33–43. [Google Scholar] [CrossRef]
- Benfield, S.; Baxter, L.; Guzman, H.M.; Mair, J.M. A comparison of coral reef and coral community fish assemblages in Pacific Panama and environmental factors governing their structure. J. Mar. Biol. Assoc. U. K. 2008, 88, 1331–1341. [Google Scholar] [CrossRef]
- Graham, N.A.J.; Nash, K.L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 2013, 32, 315–326. [Google Scholar] [CrossRef]
- Gratwicke, B.; Speight, M.R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish. Biol. 2005, 66, 650–667. [Google Scholar] [CrossRef]
- Komyakova, V.; Munday, P.L.; Jones, G.P. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS ONE 2013, 8, e83178. [Google Scholar] [CrossRef]
- Sano, M.; Shimizu, M.; Nose, Y. Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at Iriomote Is. Japan. Mar. Ecol. Prog. Ser. 1987, 37, 191–199. [Google Scholar] [CrossRef]
- Anderson, G.R.V.; Ehrlich, A.H.; Ehrlich, P.R.; Roughgarden, J.D.; Russell, B.C.; Talbot, F.H. The community structure of coral reef fishes. Am. Nat. 1981, 117, 476–495. [Google Scholar] [CrossRef]
- Emslie, M.J.; Pratchett, M.S.; Cheal, A.J.; Osborne, K. Great Barrier Reef butterflyfish community structure: The role of shelf position and benthic community type. Coral Reefs 2010, 29, 705–715. [Google Scholar] [CrossRef]
- Halford, A.; Cheal, A.J.; Ryan, D.; Williams, D.M. Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology 2004, 85, 1892–1905. [Google Scholar] [CrossRef]
- Graham, N.A.J.; Wilson, S.K.; Pratchett, M.S.; Polunin, N.V.C.; Spalding, M.D. Coral mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodivers. Conserv. 2009, 18, 3325–3336. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Hoey, A.S.; Wilson, S.K.; Messmer, V.; Graham, N.A. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 2011, 3, 424–452. [Google Scholar] [CrossRef]
- Allen, G.R.; Steene, R.; Orchard, M. Fishes of Christmas Island, 2nd ed.; Natural History Association: Christmas Island, Australia, 2007. [Google Scholar]
- Hobbs, J.P.A.; Newman, S.J.; Mitsopoulos, G.E.A.; Travers, M.T.; Skepper, C.L.; Gilligan, J.J.; Allen, G.R.; Choat, J.H.; Ayling, A.M. Checklist and new records of Christmas Island fishes: The influence of isolation, biogeography and habitat availability on species abundance and community composition. Raff. Bull. Zool. 2014, 30, 184–202. [Google Scholar]
- Allen, G.R.; Smith-Vaniz, W.F. Fishes of Cocos (Keeling) Islands. Atoll Res. Bull. 1994, 412, 21. [Google Scholar] [CrossRef]
- Hobbs, J.P.A.; Newman, S.J.; Mitsopoulos, G.E.A.; Travers, M.T.; Skepper, C.L.; Gilligan, J.J.; Allen, G.R.; Choat, J.H.; Ayling, A.M. Fishes of the Cocos (Keeling) Islands: New records, community composition and biogeographic significance. Raff. Bull. Zool. 2014, 30, 203–219. [Google Scholar]
- Pratchett, M.S.; Berumen, M.L.; Marnane, M.J.; Eagle, J.V.; Pratchett, D.J. Habitat associations of juvenile versus adult butterflyfishes. Coral Reefs 2008, 27, 541–551. [Google Scholar] [CrossRef]
- Bennett, S.; Halford, A.R.; Choat, J.H.; Hobbs, J.-P.A.; Santana-Garcon, J.; Ayling, A.M.; Harvey, E.S.; Newman, S.J. Geography and island geomorphology shape fish assemblage structure on isolated coral reef systems. Ecol. Evol. 2018, 8, 6242–6252. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef]
- Hoyos, C.D.; Agudelo, P.A.; Curry, J.A. Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 2006, 312, 94–97. [Google Scholar] [CrossRef]
Nature of Split | Island | Exposure | Depth | Total |
---|---|---|---|---|
Apolemichthys trimaculatus | 0.07 | 2.38 | 0.62 | 3.07 |
Centropyge bicolor | 0.26 | 0.07 | 0.10 | 0.43 |
C. bispinosa | 0.26 | 0.07 | 0.10 | 0.43 |
C. eibli | 0.60 | 0.15 | 0.22 | 0.97 |
C. flavicauda | 0.07 | 0.02 | 0.02 | 0.11 |
C. flavissima | 0.00 | 0.00 | 1.59 | 1.59 |
C. joculator | 0.60 | 5.97 | 8.96 | 15.52 |
C. tibicen | 0.07 | 0.02 | 0.02 | 0.11 |
C. vrolikii | 0.07 | 0.02 | 0.02 | 0.11 |
Pomacanthus imperator | 0.00 | 0.26 | 3.00 | 3.27 |
P. semicirculatus | 0.07 | 0.02 | 0.02 | 0.11 |
Pygoplites diacanthus | 6.62 | 0.81 | 0.62 | 8.05 |
Split total | 8.67 | 9.77 | 15.31 | 33.75 |
Nature of Split | Island | Exposure | Depth | Coral Cover | Total |
---|---|---|---|---|---|
Forcipiger flavissimus | 1.63 | 1.25 | 0.86 | 2.74 | 10.31 |
Chaetodon trifasciatus | 0.07 | 1.56 | 4.85 | 0.05 | 11.96 |
C. trifascialis | 0.38 | 0.01 | 1.82 | 1.46 | 10.82 |
C. ulietensis | 0 | 1.7 | 6.2 | 0 | 11.18 |
C. auriga | 0.57 | 0.24 | 0.97 | 0.05 | 8 |
C. guttatissimus | 0.27 | 0.48 | 0.01 | 0.71 | 9.75 |
Hemitaurichthys polylepis | 2.1 | 0.39 | 0.42 | 0.2 | 8.7 |
C. ornatissimus | 0.02 | 0 | 4.46 | 0.21 | 7.02 |
C. lunula | 0.02 | 0.01 | 0.83 | 0.33 | 5.19 |
C. unimaculatus | 0.1 | 0.01 | 0.72 | 0.02 | 6.62 |
C. meyeri | 0 | 0.01 | 2.29 | 0.01 | 4.91 |
C. citrinellus | 0.94 | 0.68 | 0.75 | 0.04 | 5.53 |
Split total | 6.1 | 6.33 | 24.2 | 5.81 | 42.44 |
Nature of Split | Island | Exposure | Depth | Total |
---|---|---|---|---|
Chaetodon kleinii | 2.23 | 4.22 | 0.03 | 6.48 |
Forcipiger longirostris | 0 | 0.03 | 1.8 | 1.83 |
C. madagascariensis | 1 | 3.71 | 1.96 | 6.67 |
C. ephippium | 0.06 | 0 | 1.12 | 1.18 |
Heniochus chrysostomus | 1.38 | 0.21 | 0.93 | 2.53 |
H. monoceros | 0 | 0.5 | 0.74 | 1.24 |
C. melannotus | 0.23 | 0.06 | 0.96 | 1.25 |
C. lineolatus | 0 | 0 | 0.1 | 0.11 |
C. punctatofasciatus | 0 | 0 | 0.22 | 0.22 |
H. singularius | 0 | 0 | 0.16 | 0.16 |
C. vagabundus | 0.14 | 0.07 | 0 | 0.21 |
H. varius | 0 | 0 | 0.12 | 0.12 |
C. semeion | 0.12 | 0.01 | 0.05 | 0.12 |
C. speculum | 0.02 | 0 | 0.02 | 0.02 |
C. adiergastos | 0.01 | 0 | 0.01 | 0.01 |
C. collare | 0.01 | 0 | 0.01 | 0.01 |
Split total | 5.1 | 8.81 | 8.24 | 22.15 |
Nature of Split | Island | Exposure | Depth | Microhabitat Diversity | Coral Cover | Algal Cover |
---|---|---|---|---|---|---|
Angelfishes | ||||||
Species richness | - | - | High | Medium | - | - |
Total abundance | - | - | High | - | - | - |
Species composition and relative abundance | Low | Low | Medium | - | - | - |
Butterflyfishes | ||||||
Species richness | - | High | - | - | - | Low |
Total abundance | - | High | - | - | - | - |
Species composition and relative abundance (12 common species) | High | Low | Low | - | Low | - |
Species composition and relative abundance (16 rarer species) | Low | Low | Low | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hobbs, J.-P.A.; Srinivasan, M. Structure of Reef Fish Families (Butterflyfishes and Angelfishes) at Isolated Oceanic Reefs in the Indian Ocean: Christmas Island and the Cocos (Keeling) Islands. Diversity 2024, 16, 569. https://doi.org/10.3390/d16090569
Hobbs J-PA, Srinivasan M. Structure of Reef Fish Families (Butterflyfishes and Angelfishes) at Isolated Oceanic Reefs in the Indian Ocean: Christmas Island and the Cocos (Keeling) Islands. Diversity. 2024; 16(9):569. https://doi.org/10.3390/d16090569
Chicago/Turabian StyleHobbs, Jean-Paul A., and Maya Srinivasan. 2024. "Structure of Reef Fish Families (Butterflyfishes and Angelfishes) at Isolated Oceanic Reefs in the Indian Ocean: Christmas Island and the Cocos (Keeling) Islands" Diversity 16, no. 9: 569. https://doi.org/10.3390/d16090569
APA StyleHobbs, J. -P. A., & Srinivasan, M. (2024). Structure of Reef Fish Families (Butterflyfishes and Angelfishes) at Isolated Oceanic Reefs in the Indian Ocean: Christmas Island and the Cocos (Keeling) Islands. Diversity, 16(9), 569. https://doi.org/10.3390/d16090569