Environmental Factors Affecting the Phytoplankton Composition in the Lake of Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Laboratory Analyses
2.3. Phytoplankton Collection and Identification
2.4. Data Analyses
2.4.1. The Trophic Level Index
2.4.2. Phytoplankton Species Diversity
2.4.3. Statistical Analyses
3. Results
3.1. Characteristics of Environmental Parameters
3.2. Phytoplankton Species Composition and Diversity
3.3. Relationships Between Environmental Factors and Phytoplankton Composition
4. Discussion
4.1. Spatial Distribution of Environmental Factors
4.2. Phytoplankton Species Distribution in the Tibetan Plateau
4.3. The Main Influencing Environmental Factors of Phytoplankton Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, G.P. Phytoplankton Ecology: Structure and Function and Fluctuation; Chapman & Hall: London, UK, 1986. [Google Scholar]
- Stoyneva-Grtner, M.P.; Morana, C.; Borges, A.V.; Okello, W.; Descy, J.P. Diversity and ecology of phytoplankton in Lake Edward (East Africa): Present status and long-term changes. J. Great Lakes Res. 2020, 46, 741–751. [Google Scholar] [CrossRef]
- McCormick, P.V.; Cairns, J., Jr. Algae as indicators of environmental change. J. Appl. Phycol. 1994, 6, 509–526. [Google Scholar] [CrossRef]
- Huszar, D.M.V.L.; Nina, F.C. The relationship between phytoplankton composition and physical-chemical variables: A comparison of taxonomic and morphological-functional descriptors in six temperate lakes. Freshw. Biol. 2010, 20, 679–696. [Google Scholar]
- Estifanos, G.B.; Gebre-Meskel, D.K.; Hailu, T.F. Water quality parameters affect dynamics of phytoplankton functional groups in Lake Hawassa, Ethiopia. Limnologica 2022, 94, 125968. [Google Scholar] [CrossRef]
- Liu, C.; Liu, L.; Shen, H. Seasonal variations of phytoplankton community structure in relation to physico-chemical factors in Lake Baiyangdian, China. Procedia Environ. Sci. 2010, 2, 1622–1631. [Google Scholar] [CrossRef]
- Álvarez, S.; Díaz, P.; López-Archilla, A.I.; Guerrero, M.C. Phytoplankton composition and dynamics in three shallow tempo-rary salt lakes (Monegros, Spain). J. Arid Environ. 2006, 65, 553–571. [Google Scholar] [CrossRef]
- Lv, H.; Yang, J.; Liu, L.; Yu, X.; Yu, Z.; Chiang, P. Temperature and nutrients are significant drivers of seasonal shifts in phytoplankton community from a drinking water reservoir, subtropical China. Environ. Sci. Pollut. Res. 2014, 21, 5917–5928. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yu, X.; Liu, L.; Zhang, W.; Guo, P. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environ. Sci. Pollut. Res. 2012, 19, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, T.; Hu, R.; Han, B.; Wang, S.; Qian, X.; Padisák, J. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Res. 2011, 45, 5099–5109. [Google Scholar] [CrossRef] [PubMed]
- Rakocevic-Nedovic, J.; Hollert, H. Phytoplankton community and chlorophyll a as trophic state indices of Lake Skadar (Montenegro, Balkan). Environ. Sci. Pollut. Res. 2005, 12, 146–152. [Google Scholar] [CrossRef]
- Murakami, T.; Terai, H.; Yoshiyama, Y. The second investigation of Lake Puma yum co located in the southern Tibetan plateau, China. Limnology 2007, 8, 331–335. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, R.; Liu, Z. Spatial-temporal patterns of major ion chemistry and its controlling factors in the Manasarovar Basin, Tibet. J. Geogr. Sci. 2015, 25, 687–700. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, S.; Wang, F. Major ion geochemistry of Nam co Lake and its sources, Tibetan plateau. Aquat. Geochem. 2008, 14, 321–336. [Google Scholar] [CrossRef]
- Zhu, L.; Ju, J.; Wang, Y. Composition, spatial distribution, and environmental significance of water ions in Pumayum co catchment, southern Tibet. J. Geogr. Sci. 2010, 20, 109–120. [Google Scholar] [CrossRef]
- Chen, L.; Yang, F.; Wu, S.; Liu, X.; Jia, Q. Characteristics of community structures of phytoplankton in the salt lakes in Naqu region, Tibet. J. Shanghai Ocean Univ. 2013, 22, 577–585. [Google Scholar]
- Liu, C.; Zhu, L.; Li, J.; Wang, J.; Ju, J.; Qiao, B.; Ma, Q.; Wang, S. The increasing water clarity of Tibetan lakes over last 20 years according to MODIS data. Remote Sens. Environ. 2021, 253, 112199. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.; Ju, J.; Ma, N.; Zhang, Y.; Liu, C.; Han, B.; Liu, L.; Wang, M.; Ma, Q. Climatic and lake environmental changes in the Serling Co region of Tibet over a variety of timescales. Chin. Sci. Bull. 2019, 64, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhu, L.; Wang, J.; Ju, J.; Ma, Q.; Turner, F.; Guo, Y. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim. Chang. 2017, 140, 621–633. [Google Scholar] [CrossRef]
- Song, C.; Ye, Q.; Cheng, X. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Chin. Sci. Bull. 2015, 60, 1287–1297. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhang, Y.; Guo, Y.; Li, X.; Liu, W. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling. Water Resour. Res. 2015, 51, 8060–8086. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Ma, B.; Dong, G.; Wang, L.; Zhao, J. Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges. Environ. Res. Lett. 2009, 4, 045204. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Yao, T.; Liang, T.; Kang, S. Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001–2010). Water Resour. Res. 2012, 48, W10529. [Google Scholar] [CrossRef]
- Qaiser, F.U.R.; Zhang, F.; Pant, R.R.; Zeng, C.; Khan, N.G.; Wang, G. Characterization and health risk assessment of arsenic in natural waters of the Indus River Basin, Pakistan. Sci. Total Environ. 2023, 857, 159408. [Google Scholar] [CrossRef]
- Jin, L.; Chen, H.; Xue, Y.; Soininen, J.; Yang, J. The scale-dependence of spatial distribution of reservoir plankton communities in subtropical and tropical China. Sci. Total Environ. 2022, 845, 157179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, X. Method for Study on Freshwater Plankton; Science Press: Beijing, China, 1991. [Google Scholar]
- Yang, Y.; Hu, R.; Lin, Q.; Hou, J.; Liu, Y.; Han, B.P.; Naselli-Flores, L. Spatial structure and β-diversity of phytoplankton in Tibetan Plateau lakes: Nestedness or replacement? Hydrobiologia 2018, 808, 301–314. [Google Scholar] [CrossRef]
- Hu, H.; Wei, Y. The Freshwater Algae of China: Systematics, Taxonomy and Ecology; Science Press: Beijing, China, 2006. [Google Scholar]
- Hillebrand, H. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Jin, X. The Lake Environment of China; Ocean Press: Beijing, China, 1995. [Google Scholar]
- Yu, H.; Shi, X.; Wang, S.; Zhao, S.; Sun, B.; Liu, Y.; Yang, Z. Trophic status of a shallow lake in Inner Mongolia: Long-term, seasonal, and spatial variation. Ecol. Indic. 2023, 156, 111167. [Google Scholar] [CrossRef]
- Pielou, E.C. Shannon’s formula as a measure of specific diversity: Its use and misuse. Am. Nat. 1966, 100, 463–465. [Google Scholar] [CrossRef]
- Margalef, R. Temporal succession and spatial heterogeneity in phytoplankton. In Perspectives in Marine Biology; Buzzati-Traverson, A.A., Ed.; University of California Press: Berkeley, CA, USA, 1958; pp. 323–349. [Google Scholar]
- Jiang, Y.J.; He, W.; Liu, W.X.; Qin, N.; Ouyang, H.L.; Wang, Q.M.; Kong, X.Z.; He, Q.S.; Yang, C.; Yang, B.; et al. The seasonal and spatial variations of phytoplankton com-munity and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol. Indic. 2014, 40, 58–67. [Google Scholar] [CrossRef]
- Peres-Neto, P.; Legendre, P.; Dray, S.; Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 2006, 87, 2614–2625. [Google Scholar] [CrossRef]
- Gong, D.; Guo, Z.; Wei, W.; Bi, J.; Wang, Z.; Ji, X. Phytoplankton community structure and its relationship with environmental factors in Nanhai Lake. Diversity 2022, 14, 927. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix. R Package Version 0.94. 2024. Available online: https://github.com/taiyun/corrplot (accessed on 1 March 2024).
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.6–6.1. 2024. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 March 2024).
- Liu, Y.; An, R.; Ba, S. Ecological characteristics of summer phytoplankton community in a potential constructure area of Selin Co-Puruogangri Glacier National Park of Tibet. J. Hydroecol. 2022, 43, 51–58. [Google Scholar]
- Celewicz-Gołdyn, S.; Kuczyńska-Kippen, N. Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies. PLoS ONE 2017, 12, e0177317. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Jiang, M.; Liu, X.; Yu, H.; Otte, M.L.; Ma, C.; Her, Y.G. Environmental variables influencing phytoplankton communities in hydrolog-ically connected aquatic habitats in the Lake Xingkai basin. Ecol. Indic. 2018, 91, 1–12. [Google Scholar] [CrossRef]
- Tonk, L.; Bosch, K.; Visser, P.M.; Huisman, J. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 2007, 46, 117–123. [Google Scholar] [CrossRef]
- Nalewajko, C.; Murphy, T.P. Effects of temperature and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: An experimental approach. Limnology 2001, 2, 45–48. [Google Scholar] [CrossRef]
- Chen, N.; He, J.; Sun, X.; Liu, Y.; Fan, Y. Effects of nitrate nitrogen and inorganic phosphorus concentrations and their ratios on growth, physiology and cell morphology of Navicula gregaria Donkin. Acta Bot. Boreali-Occident. Sin. 2021, 41, 615–626. [Google Scholar]
- Moura, A.D.N.; Bittencourt-Oliveira, M.D.C.; Dantas, Ê.W.; Arruda Neto, J.D.D.T. Phytoplanktonic associations: A tool to un-derstanding dominance events in a tropical Brazilian reservoir. Acta Bot. Bras. 2007, 21, 641–648. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 2002, 24, 417–428. [Google Scholar] [CrossRef]
- Wei, Z.; Chai, Y.; Luo, J.; Guo, K.; Tan, F.; Yang, D.; He, Y. Seasonal succession and ecological niche analysis of the dominant species of phytoplankton in Changhu Lake. Acta Hydrobiol. Sin. 2020, 44, 612–621. [Google Scholar]
- Poste, A.E.; Hecky, R.E.; Guildford, S.J. Phosphorus enrichment and carbon depletion contribute to high Microcystis biomass and microcystin concentrations in Ugandan lakes. Limnol. Oceanogr. 2013, 58, 1075–1088. [Google Scholar] [CrossRef]
- Rao, K.; Zhang, X.; Yi, X.; Li, Z.; Wang, P.; Huang, G.; Guo, X. Interactive effects of environmental factors on phytoplankton communities and benthic nutrient interactions in a shallow lake and adjoining rivers in China. Sci. Total Environ. 2018, 619–620, 1661–1672. [Google Scholar] [CrossRef]
Variables | Minimum | Maximum | Mean ± Std |
---|---|---|---|
Water temp. (°C) | 12.80 | 14.87 | 13.68 ± 0.52 |
Water depth (m) | 9.60 | 50.19 | 27.84 ± 12.09 |
DO (mg/L) | 2.11 | 5.37 | 3.82 ± 1.17 |
TDS (mg/L) | 6984.65 | 8011.21 | 7750.21 ± 300.66 |
pH | 9.35 | 9.70 | 9.54 ± 0.09 |
Water transparency (m) | 1.50 | 4.30 | 3.10 ± 0.87 |
Salinity (ppt) | 6.10 | 7.10 | 6.85 ± 0.29 |
EC (µS/cm) | 8339.30 | 9812.71 | 9344.76 ± 377.96 |
TP (mg/L) | 0.01 | 0.03 | 0.02 ± 0.01 |
TN (mg/L) | 0.13 | 0.61 | 0.34 ± 0.13 |
COD (mg/L) | 3.30 | 7.89 | 6.09 ± 1.19 |
TLI | 32.17 | 43.11 | 36.93 ± 3.15 |
Fluoride (mg/L) | 0.58 | 0.93 | 0.76 ± 0.10 |
Arsenic (µg/L) | 55.72 | 104.99 | 83.90 ± 13.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Xie, Z.; Li, C.; Ye, C.; Wang, Y.; Ye, Z.; Wei, W.; Wang, H. Environmental Factors Affecting the Phytoplankton Composition in the Lake of Tibetan Plateau. Diversity 2025, 17, 47. https://doi.org/10.3390/d17010047
Zhang Q, Xie Z, Li C, Ye C, Wang Y, Ye Z, Wei W, Wang H. Environmental Factors Affecting the Phytoplankton Composition in the Lake of Tibetan Plateau. Diversity. 2025; 17(1):47. https://doi.org/10.3390/d17010047
Chicago/Turabian StyleZhang, Qinghuan, Zijian Xie, Chunhua Li, Chun Ye, Yang Wang, Zishu Ye, Weiwei Wei, and Hao Wang. 2025. "Environmental Factors Affecting the Phytoplankton Composition in the Lake of Tibetan Plateau" Diversity 17, no. 1: 47. https://doi.org/10.3390/d17010047
APA StyleZhang, Q., Xie, Z., Li, C., Ye, C., Wang, Y., Ye, Z., Wei, W., & Wang, H. (2025). Environmental Factors Affecting the Phytoplankton Composition in the Lake of Tibetan Plateau. Diversity, 17(1), 47. https://doi.org/10.3390/d17010047