Seasonal and Spatial Variation in the Diet of Gambusia holbrooki in Different Water Bodies of Karaburun Peninsula (Western Türkiye)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Laboratory Procedures
2.3. Diet Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villéger, S.; Grenouillet, G.; Brosse, S. Functional homogenization exceeds taxonomic homogenization among European fish assemblages. Glob. Ecol. Biogeogr. 2014, 23, 1450–1460. [Google Scholar] [CrossRef]
- Toussaint, A.; Beauchard, O.; Oberdorff, T.; Brosse, S.; Villéger, S. Worldwide freshwater fish homogenization is driven by a few widespread non-native species. Biol. Invasions 2016, 18, 1295–1304. [Google Scholar] [CrossRef]
- Vitousek, P.M.; D’Antonio, C.M.; Loope, L.L.; Rejmánek, M.; Westbrooks, R. Introduced species: A significant component of human-caused global change. New Zealand J. Ecol. 1997, 21, 1–16. [Google Scholar]
- Cheng, Y.; Xiong, W.; Tao, J.; He, D.; Chen, K.; Chen, Y. Life-history traits of the invasive mosquitofish (Gambusia affinis Baird and Girard, 1853) in the central Yangtze River, China. BioInvasions Rec. 2018, 7, 309–318. [Google Scholar] [CrossRef]
- Walton, W.E.; Henke, J.A.; Why, A.M. Gambusia affinis (Baird and Girard) and Gambusia holbrooki Girard (Mosquitofish). In A Handbook of Global Freshwater Invasive Species; Francis, R., Ed.; Earthscan Co., Ltd.: London, UK, 2011; Chapter 22; pp. 261–273. [Google Scholar]
- Lloyd, L. An Alternative to insect control by “Mosquitofish”, Gambusia affinis. Arbovirus Res. Aust. 1986, 156–163. [Google Scholar]
- Azevedo-Santos, V.M.; Vitule, J.R.S.; Pelicice, F.M.; García-Berthou, E.; Simberloff, D. Nonnative fish to control Aedes mosquitoes: A controversial, harmful tool. BioScience 2016, 67, 84–90. [Google Scholar] [CrossRef]
- Das, M.K.; Rao, M.R.K.; Kulsreshtha, A.K. Native larvivorous fish diversity as a biological control agent against mosquito larvae in an endemic malarious region of Ranchi district in Jharkhand, India. J. Vector Borne Dis. 2018, 55, 34–41. [Google Scholar] [CrossRef]
- Ranathunge, T.; Kusumawathie, P.H.D.; Abeyewickreme, W.; Udayanga, L.; Fernando, T.; Hapugoda, M. Biocontrol potential of six locally available fish species as predators of Aedes aegypti in Sri Lanka. Biol. Control 2021, 160, 104638. [Google Scholar] [CrossRef]
- Innal, D.; Giannetto, D. Occurrence of Gambusia holbrooki Girard, 1859 (Poeciliidae) in four Mediterranean river estuaries of Turkey, nursery habitats of several native and threatened species. Acta Zool. Bulg. 2020, 72, 553–560. [Google Scholar]
- Pyke, G.H. Plague minnow or Mosquito fish? A review of the biology and impacts of introduced Gambusia species. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 171–191. [Google Scholar] [CrossRef]
- Kumar, R.; Muhid, P.; Dahms, H.U.; Sharma, J.; Hwang, J.S. Biological mosquito control is affected by alternative prey. Zool. Stud. 2015, 54, 55. [Google Scholar] [CrossRef] [PubMed]
- Hurlbert, S.H.; Zedler, J.; Fairbanks, D. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science 1972, 175, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Margaritora, F.G.; Ferrara, O.; Vagaggini, D. Predatory impact of the mosquitofish (Gambusia holbrooki Girard) on zooplanktonic populations in a pond at Tenuta di Castelporziano (Rome, Central Italy). J. Limnol. 2001, 60, 189–193. [Google Scholar] [CrossRef]
- Angeler, D.G.; Sanchez-Carrillo, S.; Rodrigo, M.A.; Alvarez-Cobelas, M.; Rojo, C. Does seston size structure reflect fish-mediated effects on water quality in a degraded semiarid wetland? Environ. Monit. Assess. 2007, 125, 9–17. [Google Scholar] [CrossRef]
- Brodman, R.; Dorton, R. The effectiveness of pond-breeding salamanders as agents of larval mosquito control. J. Freshw. Ecol. 2006, 21, 467–474. [Google Scholar] [CrossRef]
- Gkenas, C.; Oikonomou, A.; Economou, A.; Kiosse, F.; Leonardos, I. Life history pattern and feeding habits of the invasive mosquitofish, Gambusia holbrooki, in Lake Pamvotis (NW Greece). J. Biol. Res. Thessalon. 2012, 17, 121–136. [Google Scholar]
- Watters, A.M.; Rowland, F.E.; Semlitsch, R.D. Larval salamanders are as effective at short-term mosquito predation as mosquitofish. Can. J. Zool. 2018, 96, 10. [Google Scholar] [CrossRef]
- Arthington, A.H. Impacts of introduced and translocated freshwater fishes in Australia. In Exotic Aquatic Organisms in Asia: Proceedings of a Workshop on Introduction to Exotic Aquatic Organisms in Asia, Darwin, AU, Australia, 19–21 June 1988; de Silva, S.S., Ed.; Asian Fisheries Society: Manila, Philippines, 1989; pp. 7–20. [Google Scholar]
- Ruiz-Navarro, A.; Torralva, M.; Oliva-Paterna, F.J. Trophic overlap between cohabiting populations of invasive mosquitofish and an endangered toothcarp at changing salinity conditions. Aquat. Biol. 2013, 19, 1–11. [Google Scholar] [CrossRef]
- Yoğurtçuoğlu, B.; Ekmekçi, F.G. Variation in life history and feeding ecology of the invasive eastern mosquitofish, Gambusia holbrooki Girard, 1859 (Poeciliidae), in a droundwater-dependent wetland in Turkey. Acta Zool. Bulg. 2017, 9, 117–130. [Google Scholar]
- Li, M.; Jiao, Y.; Xu, B.; Zhang, C.; Xue, Y.; Ren, Y. Spatial analyses of the influence of autocorrelation on seasonal diet composition of a marine fish species. Fish. Res. 2020, 228, 105563. [Google Scholar] [CrossRef]
- Adite, A.; Winemillerb, K.O.; Fiogbe, E.D. Ontogenetic, seasonal, and spatial variation in the diet of Heterotis niloticus (Osteoglossiformes: Osteoglossidae) in the Sô River and Lake Hlan, Benin, West Africa. Environ. Biol. Fishes 2005, 73, 367–378. [Google Scholar] [CrossRef]
- Neves, M.P.; Kratina, P.; Delariva, R.L.; Jones, J.I.; Fialho, C.B. Seasonal feeding plasticity can facilitate coexistence of dominant omnivores in Neotropical streams. Rev. Fish Biol. Fish. 2021, 31, 417–432. [Google Scholar] [CrossRef]
- Singh, N.; Gupta, P.K. Food and feeding habits of an introduced mosquitofish, Gambusia holbrooki (Girard) (Poeciliidae) in a subtropical lake, Lake Nainital, India. Asian Fish. Sci. 2010, 23, 355–366. [Google Scholar] [CrossRef]
- Dirnberger, J.M.; Love, J. Seasonal specialization and selectivity of the Eastern Mosquitofish, Gambusia holbrooki, toward planktonic prey. Southeast. Nat. 2016, 15, 138–152. [Google Scholar] [CrossRef]
- IZKA. Yarımada Sürdürülebilir Kalkınma Stratejisi; İzmir Kalkınma Ajansı: İzmir, Turkey, 2014. (In Turkish) [Google Scholar]
- Nilsson, A. Ephemeroptera, Plecoptera, Heteroptera, Megaloptera, Neuroptera, Coleoptera, Trichoptera and Lepidoptera. In Aquatic Insects of North Europe. A Taxonomic Handbook; Apollo Books: Stenstrup, Denmark, 1996; Volume 1, 274p, ISBN 87-88757-09-9. [Google Scholar]
- Nilsson, A. Aquatic Insects of Northern Europe. A Taxonomic Handbook; Odonata, Diptera. Apollo Books: Stenstrup, Denmark, 1997; Volume 2, 440p, ISBN 87-88757-15-3. [Google Scholar]
- Oscoz, J.; Galicia, D.; Miranda, R. Identification Guide of Freshwater Macroinvertebrates of Spain; Springer: London, UK, 2011; 153p, ISBN 978-94-007-1553-0. [Google Scholar]
- Hyslop, E.J. Stomach contents analysis–a review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. Primer v6: User Manual/Tutorial, Primer E, Plymouth; Plymouth Marine Laboratory: Plymouth, UK, 2006. [Google Scholar]
- Costello, M.J. Predator feeding strategy and prey importance: A new graphical analysis. J. Fish Biol. 1990, 36, 261–263. [Google Scholar] [CrossRef]
- Amundsen, P.A.; Gabler, H.M.; Staldvik, F.J. A new approach to graphical analysis of feeding strategy from stomach contents data-modification of the Costello (1990) method. J. Fish Biol. 1996, 48, 607–614. [Google Scholar] [CrossRef]
- Rodriguez-Silva, R.; Spikes, M.; Iturriaga, M.; Bennett, K.A.; Josaphat, J.; Torres-Pineda, P.; Bräger, S.; Schlupp, I. Feeding strategies and diet variation in livebearing fishes of the genus Limia (Cyprinodontiformes: Poeciliidae) in the Greater Antilles. Ecol. Freshw. Fish 2022, 31, 389–400. [Google Scholar] [CrossRef]
- Penttinen, O.P.; Holopainen, I.J. Seasonal feeding activity and ontogenetic dietary shifts in crucian carp. Carassius Carassius. Environ. Biol. Fishes 1992, 33, 215–221. [Google Scholar] [CrossRef]
- Khelifi, N.; Boualleg, C.; Sahtout, F.; Kaouachi, N.; Mouaissia, W.; Bensouillah, M. Feeding habits of Carassius carassius (Cyprinidae) in Beni Haroun Dam (north-east of Algeria). AACL Bioflux 2017, 10, 1596–1609. [Google Scholar]
- Sajeevan, M.K.; Madhusoodana Kurup, B. Maturity, spawning and feeding intensity of cobia Rachycentron canadum (Linnaeus, 1766) in northwest coast of India. Iran. J. Fish. Sci. 2020, 19, 31–44. [Google Scholar]
- Singh, N.; Gupta, P.K. Reproductive biology of eastern mosquito fish Gambusia holbrooki (Girard) (Poeciliiadae) in a sub-tropical Lake, Lake Nainital (India). Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 19–31. [Google Scholar]
- Koya, Y.; Itazu, E.; Inoue, M. Annual reproductive cycle based on histological changes in the mary of the female mosquitofish, Gambusia affinis, in central Japan. Ichthyol. Res. 1998, 45, 241–248. [Google Scholar] [CrossRef]
- Pérez-Bote, J.L.; López, M.T. Life-history pattern of the introduced eastern mosquitofish, Gambusia holbrooki (Baird & Girard, 1854), in a Mediterranean-type river: The River Guadiana (SW Iberian Peninsula). Ital. J. Zool. 2005, 72, 241–248. [Google Scholar] [CrossRef]
- Kostrzewa, J.; Grabowski, M. Opportunistic feeding strategy as a factor promoting the expansion of racer goby (Neogobius gymnotrachelus Kessler, 1857) in the Vistula basin. Lauterbornia 2003, 48, 91–100. [Google Scholar]
- Thorp, J.H.; Rogers, D.C. Chapter 27—Midges, Mosquitoes, Blackflies, and Other True Flies: Insect Order Diptera. In Field Guide to Freshwater Invertebrates of North America; Academic Press: Cambridge, MA, USA, 2011; pp. 247–260. [Google Scholar] [CrossRef]
- Pallottini, M.; Pagliarini, S.; Catasti, M.; La Porta, G.; Selvaggi, R.; Gaino, E.; Spacone, L.; Di Giulio, A.M.; Ali, A.; Goretti, E. Population dynamics and seasonal patterns of Chironomus plumosus (Diptera, Chironomidae) in the shallow lake Trasimeno, Central Italy. Sustainability 2023, 15, 851. [Google Scholar] [CrossRef]
- Berglund, J.; Mattila, J.; Rönnberg, O.; Heikkila, J.; Bonsdorf, E. Seasonal and inter-annual variation in occurrence and biomass of rooted macrophytes and drift algae in shallow bays. Estuar. Coast. Shelf Sci. 2003, 56, 1167–1175. [Google Scholar] [CrossRef]
- Page, M.; Goldhammer, T.; Hilt, S.; Tolentino, S.; Brothers, S. Filamentous algae blooms in a large, clear-water lake: Potential drivers and reduced benthic primary production. Water 2022, 14, 2136. [Google Scholar] [CrossRef]
- Hu, B.; Hu, X.; Nie, X.; Zhang, X.; Wu, N.; Hong, Y.; Qin, H.M. Seasonal and inter-annual community structure characteristics of zooplankton driven by water environment factors in a sub-lake of Lake Poyang, China. PeerJ. 2019, 7, e7590. [Google Scholar] [CrossRef]
- Wu, F.X.; Gu, Y.G.; Liu, Q.X.; Zhang, S.F.; Rao, Y.Y.; Liu, H.X.; Dai, M.; Wang, Y.G.; Huang, H.H. Research on the seasonal variation of zooplankton community in Daya Bay, South China Sea. Front. Mar. Sci. 2023, 10, 1110160. [Google Scholar] [CrossRef]
- Crivelli, A.J.; Boy, V. The diet of the mosquitofish Gambusia affinis (Baird & Girard) (Poeciliidae) in Mediterranean France. Revue d’Ecologie 1987, 42, 421. [Google Scholar]
- Ağdamar, S.; Saç, G.; Gaygusuz, Ö. Assessing some bio-ecological metrics related to the growth and diet of invasive Gambusia holbrooki in different habitats (lotic vs. lentic) of an island ecosystem (Gökçeada, Turkey). Russ. J. Ecol. 2023, 54, 156–164. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, San Diego; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Skevington, J.H.; Dang, P.T. Exploring the diversity of flies (Diptera). Biodiversity 2002, 3, 3. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Cech, J.J.; Compton, J. Effect of fish size on prey selection in Gambusia affinis. Proc. Annu. Conf. Am. Mosq. Control Assoc. 1980, 48, 48–51. [Google Scholar]
- Saç, G. Diet and feeding ecology of the invasive Gambusia holbrooki (Teleostei: Poeciliidae) in lotic and lentic habitats (Northwestern part of Turkey). Inland Water Biol. 2023, 16, 330–340. [Google Scholar] [CrossRef]
- Cerveira, I.; Diea, E.; Baptista, V.; Teodósio, M.A.; Morais, P. Invasive fish keeps native feeding strategy despite high niche overlap with a congener species. Reg. Stud. Mar. Sci. 2001, 47, 101969. [Google Scholar] [CrossRef]
No | Site | Coordinate | n | TL, cm (min.-max.) | Mean TL ± SD | W, g (min.-max.) | Mean W ± SD |
---|---|---|---|---|---|---|---|
1 | Lake Iris | 38.49250 N 26.45000 E | 247 | 1.6–4.0 | 2.43 ± 0.49 | 0.05–0.80 | 0.20 ± 0.16 |
2 | Parlak Reservoir | 38.61306 N 26.40667 E | 318 | 1.6–5.3 | 3.17 ± 0.72 | 0.05–3.80 | 0.47 ± 0.47 |
3 | Eğlenhoca Reservoir | 38.52656 N 26.55944 E | 306 | 1.8–5.3 | 3.17 ± 0.57 | 0.08–1.72 | 0.38 ± 0.28 |
Foods | Lake Iris | Parlak Reservoir | Eğlenhoca Reservoir | ||||||
---|---|---|---|---|---|---|---|---|---|
F% | IRI% | MI% | F% | IRI% | MI% | F% | IRI% | MI% | |
Diptera | 40.20 | 31.13 | 16.80 | 41.11 | 10.48 | 17.83 | 38.31 | 11.60 | 9.47 |
Ephemeroptera | 3.02 | 0.36 | 0.30 | 2.37 | 0.22 | 0.47 | 3.63 | 0.17 | 0.17 |
Plecoptera | 1.51 | 0.06 | 0.04 | - | - | - | 0.40 | <0.01 | <0.01 |
Trichoptera | 0.50 | 0.01 | 0.01 | 3.56 | 0.19 | 0.39 | 0.81 | <0.01 | <0.01 |
Odonata | - | - | - | 0.79 | 0.01 | 0.02 | 2.42 | 0.17 | 0.19 |
Hemiptera | - | - | - | - | - | - | 1.21 | 0.01 | 0.01 |
Coleoptera | - | - | - | 0.79 | 0.01 | 0.03 | 0.40 | <0.01 | <0.01 |
Terrestrial insects | 3.02 | 0.21 | 0.16 | 1.98 | 0.04 | 0.09 | 4.03 | 0.18 | 0.18 |
Ostracoda | 9.05 | 1.92 | 0.63 | - | - | - | 0.81 | 0.01 | <0.01 |
Copepoda | 12.56 | 6.20 | 0.74 | 6.72 | 0.14 | 0.14 | 8.87 | 0.32 | 0.09 |
Cladocera | 31.16 | 59.25 | 12.43 | 51.78 | 88.87 | 13.41 | 39.52 | 87.46 | 2.63 |
Gammaridae | - | - | - | - | - | - | 0.40 | <0.01 | <0.01 |
Crustacea * | - | - | - | 0.40 | 0.02 | 0.04 | - | - | - |
Acaridae | 5.03 | 0.75 | 0.53 | 1.98 | 0.01 | 0.01 | 2.42 | 0.05 | 0.01 |
Bivalvia | 1.51 | 0.06 | 0.05 | 0.40 | 0.01 | 0.02 | - | - | - |
Pisces | - | - | - | - | - | - | 0.40 | 0.02 | 0.02 |
Plant material | 62.31 | - | 68.30 | 28.46 | - | 67.57 | 40.73 | - | 87.22 |
PES (%) | 19.4 | 20.4 | 19.0 | ||||||
H′ | 2.48 | 2.27 | 2.49 |
Foods | Spring | Summer | Autumn | Winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F% | IRI% | MI% | F% | IRI% | MI% | F% | IRI% | MI% | F% | IRI% | MI% | |
Diptera | 49.06 | 42.07 | 46.40 | 62.50 | 50.80 | 28.44 | 47.37 | 100.00 | 15.94 | 4.08 | 0.09 | 0.16 |
Ephemeroptera | 11.32 | 4.22 | 6.27 | - | - | - | - | - | - | - | - | - |
Plecoptera | 3.77 | 0.32 | 0.43 | 2.50 | 0.11 | 0.13 | - | - | - | - | - | - |
Trichoptera | 1.89 | 0.16 | 0.25 | - | - | - | - | - | - | - | - | - |
Terrestrial insects | 9.43 | 1.89 | 2.70 | - | - | - | - | - | - | 2.04 | 0.02 | 0.04 |
Ostracoda | 26.42 | 12.76 | 8.33 | 5.00 | 0.39 | 0.32 | - | - | - | 4.08 | 0.10 | 0.16 |
Copepoda | 15.09 | 14.36 | 2.45 | - | - | - | - | - | - | 34.69 | 7.93 | 11.53 |
Cladocera | 20.75 | 23.22 | 3.97 | 10.00 | 37.87 | 20.60 | - | - | - | 95.92 | 91.85 | 88.11 |
Acaridae | 5.66 | 0.25 | 0.22 | 17.50 | 10.83 | 12.61 | - | - | - | - | - | - |
Bivalvia | 5.66 | 0.74 | 1.08 | - | - | - | - | - | - | - | - | - |
Plant material | 22.64 | - | 27.90 | 37.50 | - | 37.91 | 61.40 | - | 84.06 | - | - | - |
PES (%) | 8.6 | 34.4 | 25.0 | 5.8 | ||||||||
H′ | 3.0 | 1.97 | 0.99 | 1.26 |
Foods | Spring | Summer | Autumn | Winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F% | IRI% | MI% | F% | IRI% | MI% | F% | IRI% | MI% | F% | IRI% | MI% | |
Diptera | 69.70 | 74.93 | 75.15 | 25.35 | 80.95 | 1.13 | 40.00 | 6.88 | 5.37 | 42.86 | 10.89 | 27.38 |
Ephemeroptera | 3.03 | 0.33 | 0.40 | 5.63 | 3.90 | 0.33 | 3.33 | 0.83 | 1.16 | - | - | - |
Trichoptera | - | - | - | 7.04 | 7.67 | 0.82 | - | - | - | 3.36 | 0.04 | 0.10 |
Odonata | - | - | - | 1.41 | 0.20 | 0.01 | 3.33 | 0.15 | 0.18 | - | - | - |
Coleoptera | 3.03 | 0.21 | 0.26 | 1.41 | 0.33 | 0.04 | - | - | - | - | - | - |
Terrestrial insects | 9.09 | 1.18 | 1.37 | 1.41 | 0.25 | 0.02 | - | - | - | 0.84 | 0.01 | 0.02 |
Copepoda | 3.03 | 0.14 | 0.02 | - | - | - | - | - | - | 13.45 | 0.48 | 1.11 |
Cladocera | 12.12 | 22.68 | 2.38 | 1.41 | 6.69 | <0.01 | 36.67 | 91.52 | 5.43 | 96.64 | 88.54 | 70.21 |
Crustacea * | - | - | - | - | - | - | 3.33 | 0.62 | 0.86 | - | - | - |
Acaridae | - | - | - | - | - | - | - | - | - | 4.20 | 0.04 | 0.11 |
Bivalvia | 3.03 | 0.52 | 0.65 | - | - | - | - | - | - | - | - | - |
Plant material | 27.27 | - | 19.78 | 66.20 | - | 97.65 | 33.33 | - | 87.00 | 5.04 | - | 1.07 |
PES (%) | 25.0 | 26.0 | 41.2 | 6.3 | ||||||||
H′ | 2.05 | 1.73 | 1.96 | 1.69 |
Foods | Spring | Summer | Autumn | Winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F% | IRI% | MI% | F% | IRI% | MI% | F% | IRI% | MI% | F% | IRI% | MI% | |
Diptera | 62.07 | 56.42 | 84.04 | 20.37 | 47.57 | 0.46 | 19.44 | 89.64 | 2.26 | 55.91 | 15.73 | 39.60 |
Ephemeroptera | - | - | - | 16.67 | 32.41 | 1.54 | - | - | - | - | - | - |
Plecoptera | - | - | - | - | - | - | - | - | - | 1.08 | 0.01 | 0.02 |
Trichoptera | - | - | - | - | - | - | - | - | - | 2.15 | 0.04 | 0.10 |
Odonata | - | - | - | 7.41 | 7.94 | 0.99 | 1.39 | 0.34 | 0.01 | 1.08 | 0.01 | 0.03 |
Hemiptera | 10.34 | 1.32 | 2.00 | - | - | - | - | - | - | - | - | - |
Coleoptera | - | - | - | - | - | - | 1.39 | 0.31 | 0.01 | - | - | - |
Terrestrial insects | - | - | - | 1.85 | 0.55 | 0.07 | 2.78 | 1.26 | 0.03 | 7.53 | 0.44 | 1.13 |
Ostracoda | 6.90 | 0.73 | 0.95 | - | - | - | - | - | - | - | - | - |
Copepoda | 20.69 | 40.88 | 11.15 | - | - | - | - | - | - | 23.66 | 1.32 | 2.90 |
Cladocera | - | - | - | 5.56 | 6.60 | 0.02 | - | - | - | 95.70 | 82.44 | 54.97 |
Gammaridae | 3.45 | 0.65 | 1.00 | - | - | - | - | - | - | - | - | - |
Acaridae | - | - | - | 1.85 | 3.97 | 0.01 | 4.17 | 8.45 | 0.01 | 2.15 | 0.01 | 0.02 |
Pisces | - | - | - | 1.85 | 0.96 | 0.16 | - | - | - | - | - | - |
Plant material | 3.45 | - | 0.86 | 72.22 | - | 96.75 | 76.39 | - | 97.69 | 6.45 | - | 1.22 |
VI (%) | 50.8 | 5.3 | 21.7 | 5.1 | ||||||||
H′ | 1.82 | 1.97 | 1.27 | 1.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saç, G.; Ağdamar, S.; Acar, Ü.; Giannetto, D. Seasonal and Spatial Variation in the Diet of Gambusia holbrooki in Different Water Bodies of Karaburun Peninsula (Western Türkiye). Diversity 2025, 17, 51. https://doi.org/10.3390/d17010051
Saç G, Ağdamar S, Acar Ü, Giannetto D. Seasonal and Spatial Variation in the Diet of Gambusia holbrooki in Different Water Bodies of Karaburun Peninsula (Western Türkiye). Diversity. 2025; 17(1):51. https://doi.org/10.3390/d17010051
Chicago/Turabian StyleSaç, Gülşah, Sevan Ağdamar, Ümit Acar, and Daniela Giannetto. 2025. "Seasonal and Spatial Variation in the Diet of Gambusia holbrooki in Different Water Bodies of Karaburun Peninsula (Western Türkiye)" Diversity 17, no. 1: 51. https://doi.org/10.3390/d17010051
APA StyleSaç, G., Ağdamar, S., Acar, Ü., & Giannetto, D. (2025). Seasonal and Spatial Variation in the Diet of Gambusia holbrooki in Different Water Bodies of Karaburun Peninsula (Western Türkiye). Diversity, 17(1), 51. https://doi.org/10.3390/d17010051