Karyotype Analysis and Genome Size Estimation Using Flow Cytometry of the Genus Encyclia Hook. (Orchidaceae: Laeliinae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation and Staining of Chromosomes
2.3. Construction of Flow Cytometry System for Encyclia
2.4. Flow Cytometric Estimation of 2C DNA Content
2.5. Statistical Analysis
3. Results
3.1. Karyotype Analysis
3.2. Flow Cytometry Analysis of Encyclia
3.3. Genome Size Estimation of Encyclia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Dressler, R.; Pollard, G. The Genus Encyclia in Mexico. Mex. Asoc. Mex. Orquideologia 1974, 24, 152. [Google Scholar] [CrossRef]
- Leopardi-Verde, C.L.; Carnevali, G.; Romero-González, G.A. A Phylogeny of the Genus Encyclia (Orchidaceae: Laeliinae), with Emphasis on the Species of the Northern Hemisphere. J. Sytematics Evol. 2017, 55, 110–123. [Google Scholar] [CrossRef]
- Lipińska, M.M.; Olędrzyńska, N.; Dudek, M.; Naczk, A.M.; Łuszczek, D.; Szabó, P.; Speckmaier, M.; Szlachetko, D.L. Characters Evolution of Encyclia (Laeliinae-Orchidaceae) Reveals a Complex Pattern Not Phylogenetically Determined: Insights from Macro- and Micromorphology. BMC Plant Biol. 2023, 23, 661. [Google Scholar] [CrossRef]
- Carnevali, G.; Tamayo-Cen, I.; Méndez-Luna, C.E.; Ramírez-Morillo, I.M.; Tapia-Muñoz, J.L.; Cetzal-Ix, W.; Romero-González, G.A. Phylogenetics and Historical Biogeography of Encyclia (Laeliinae: Orchidaceae) with an Emphasis on the E. adenocarpos Complex, a New Species, and a Preliminary Species List for the Genus. Org. Divers. Evol. 2023, 23, 41–75. [Google Scholar] [CrossRef]
- Leopardi-Verde, C. Sistemática y Evolución de Encyclia Hook. (Orchidaceae: Laeliinae), Con Énfasis en Megaméxico III. Centro de Investigación Científica de Yucatán, México. 2014. Available online: http://cicy.repositorioinstitucional.mx/jspui/handle/1003/1427 (accessed on 10 April 2014).
- Guerra, M. Chromosome Numbers in Plant Cytotaxonomy: Concepts and Implications. Cytogenet. Genome Res. 2008, 120, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Dash, C.K.; Rahman, M.O.; Sultana, S.S. Karyological Investigation on Three Zephyranthes Species and Its Taxonomic Significance. Cytologia 2020, 85, 163–168. [Google Scholar] [CrossRef]
- Dehery, S.K.; Panda, E.; Saha, P.R.; Sinha, R.K.; Das, A.B. Chromosome Diversity and Karyotype Asymmetry Analysis in Four Cultivated Triploid and Three Diploid Wild Genotypes of Musa from North-East India. Nucleus 2021, 64, 167–179. [Google Scholar] [CrossRef]
- Basu, S. Elucidating Karyotype Structure and Affinity through Application of Karyomorphological Parameters and Multivariate Analysis, as Discerned from the Study of Four Important Legumes. Nucleus 2023, 66, 39–46. [Google Scholar] [CrossRef]
- Patel, P.; Dehery, S.K.; Jena, S.N.; Pradhan, C.; Das, A.B. Chromosomal Variations in Twelve Ecotypes of a Medicinal Plant Drimia Indica (Roxb.) Jessop: Karyotypes and 2C DNA Content Analysis. Genet. Resour. Crop Evol. 2024, 71, 621–634. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Wang, Y.; Fan, G.; Zhang, S.; Wang, Y.; Liao, K. Determination of Genome Size and Chromosome Ploidy of Selected Taxa from Prunus Armeniaca by Flow Cytometry. Sci. Hortic. 2020, 261, 108987. [Google Scholar] [CrossRef]
- Müller, L.-L.B.; Zotz, G.; Albach, D.C. Bromeliaceae Subfamilies Show Divergent Trends of Genome Size Evolution. Sci. Rep. 2019, 9, 5136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, W.; Sun, L.; Zhao, F.; Huang, B.; Yang, W.; Tao, Y.; Wang, J.; Yuan, Z.; Fan, G.; et al. The Genome of Prunus Mume. Nat. Commun. 2012, 3, 1318. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Wen, J.; Yang, Y.; Nie, Z.; Meng, Y. Genome Size Variation and Evolution in the Grape Family Vitaceae. J. Sytematics Evol. 2018, 56, 273–282. [Google Scholar] [CrossRef]
- Guo, S.; Yu, J.; Li, D.; Zhou, P.; Fang, Q.; Yin, L. DNA C-Values of 138 Herbaceous Species and Their Biological Significance. Acta Ecol. Sin. 2015, 35, 6516–6529. [Google Scholar] [CrossRef]
- Querino, B.C.; Ferraz, M.E.; Mata-Sucre, Y.; Souza, G.; Felix, L.P. Cytomolecular Diversity of the Subtribe Laeliinae (Epidendroidae, Orchidaceae) Suggests No Relationship between Genome Size and Heterochromatin Abundance. Plant Syst. Evol. 2020, 306, 19. [Google Scholar] [CrossRef]
- Stebbins, G.L. Chromosomal Evolution in Higher Plants; Edward Arnold Ltd.: London, UK, 1971. [Google Scholar]
- Arano, H. Cytological Studies in Subfamily Carduoideae (Compositae) of Japan IX. The Karyotype Analysis and Phylogenic Considerations on Pertya and Ainsliaea (2). Shokubutsugaku Zasshi 1963, 76, 32–39. [Google Scholar] [CrossRef]
- Levan, A.; Fredga, K.; Sandberg, A.A. Nomenclature for Centromeric Position on Chromosomes. Hereditas 2009, 52, 201–220. [Google Scholar] [CrossRef]
- Vimala, Y.; Lavania, S.; Lavania, U.C. Chromosome Change and Karyotype Differentiation–Implications in Speciation and Plant Systematics. Nucleus 2021, 64, 33–54. [Google Scholar] [CrossRef]
- Ramsey, J.; Schemske, D.W. Pathways, Mechanisms, and Rates of Polyploid Formation in Flowering Plants. Annu. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef]
- Zeng, R.-Z.; Zhu, J.; Xu, S.-Y.; Du, G.-H.; Guo, H.-R.; Chen, J.; Zhang, Z.-S.; Xie, L. Unreduced Male Gamete Formation in Cymbidium and Its Use for Developing Sexual Polyploid Cultivars. Front. Plant Sci. 2020, 11, 558. [Google Scholar] [CrossRef]
- Song, C.; Liu, S.; Xiao, J.; He, W.; Zhou, Y.; Qin, Q.; Zhang, C.; Liu, Y. Polyploid Organisms. Sci. China Life Sci. 2012, 55, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sang, Y.; Zhou, Q.; Zhang, P. Colchicine in Vitro Tetraploid Induction of Populus Hopeiensis from Leaf Blades. Plant Cell Tiss. Organ. Cult. 2020, 141, 339–349. [Google Scholar] [CrossRef]
- Qiu, Y.; Hamernick, S.; Ortiz, J.B.; Watkins, E. DNA Content and Ploidy Estimation of Festuca Ovina Accessions by Flow Cytometry. Crop Sci. 2020, 60, 2757–2767. [Google Scholar] [CrossRef]
- Lee, Y.-I.; Tseng, Y.; Lee, Y.-C.; Chung, M.-C. Chromosome Constitution and Nuclear DNA Content of Phalaenopsis Hybrids. Sci. Hortic. 2020, 262, 109089. [Google Scholar] [CrossRef]
Name | Types | Genus | Seed Parent | Pollen Parent |
---|---|---|---|---|
E. alata | Species | Encyclia | - | - |
E. cordigera var. alba | Species | Encyclia | - | - |
E. cordigera var. rosea | Species | Encyclia | - | - |
E. granitica | Species | Encyclia | - | - |
E. rufa | Species | Encyclia | - | - |
E. tampensis var. alba | Species | Encyclia | - | - |
E. tampensis ‘Gem’ | Species | Encyclia | - | - |
E. Orchid Jungle | Intrageneric hybrid | Encyclia | E. alata | E. phoenicea |
E. Shinfong Smile | Intrageneric hybrid | Encyclia | E. Shinfong Thomas | E. cordigera |
Eny. Circus Lady ‘Coastal Star’ | Intergeneric hybrid | Enanthleya | Cattlianthe Trick or Treat | E. correllii |
Gcy. Kyoguchi ‘Fumi’ | Intergeneric hybrid | Guaricyclia | Guarianthe aurantiaca | E. incumbens |
Robertsara Green Wonder | Intergeneric hybrid | Robertsara | Epicyclia Mabel Kanda | Cattlianthe Loog Tone |
Name | Karyotype Formula | Relative Length Range (%) | Average Arm Ratio | Asymmetry Index (%) | Longest/ Shortest | Scale of Arm Ratio > 2 (%) | Karyotype |
---|---|---|---|---|---|---|---|
E. alata | 2n = 2x = 40 = 8 m + 32 sm | 0.27~0.54 | 2.11 | 66.71 | 2.33 | 0.53 | 3B |
E. tampensis var. alba | 2n = 2x = 40 = 24 m + 16 sm | 0.43~0.88 | 1.77 | 63.33 | 2.11 | 0.20 | 2B |
E. tampensis ‘Gem’ | 2n = 2x = 40 = 8 m + 32 sm | 0.40~0.81 | 1.90 | 64.57 | 2.13 | 0.38 | 2B |
E. cordigera var. alba | 2n = 2x = 40 = 4 m + 34 sm + 2 st | 0.32~0.72 | 2.19 | 67.91 | 2.42 | 0.58 | 3B |
E. rufa | 2n = 2x = 40 = 26 m + 14 sm | 0.31~0.66 | 1.55 | 60.43 | 2.20 | 0.08 | 2B |
E. Shinfong Smile | 2n = 2x = 40 = 24 m + 16 sm | 0.70~2.00 | 1.76 | 62.24 | 3.03 | 0.25 | 2B |
Robertsara Green Wonder | 2n = 4x = 80 = 60 m + 20 sm | 1.01~2.50 | 1.62 | 80.00 | 5.16 | 0.14 | 2C |
Lysis Solution | Fluorescence Intensity | Coefficient of Variation (%) |
---|---|---|
GLB | 6881.17 ± 138.32 c | 4.11 ± 0.11 ab |
WPB | 7796.33 ± 5.51 a | 4.37 ± 0.03 a |
mGb | 7571.50 ± 75.75 b | 3.84 ± 0.35 b |
Name | Fluorescence Intensity | Ratio | Genome Size (Gb) | Coefficient of Variation (%) | Ploidy Level |
---|---|---|---|---|---|
D. officinale | 6313.33 ± 119.26 | 1.00 | 1.11 | 4.53 ± 0.37 | Diploidy |
E. alata | 6395.33 ± 17.39 | 1.01 ± 0.02 | 1.12 ± 0.02 | 4.56 ± 0.02 | Diploidy |
E. cordigera var. rosea | 6320.17 ± 62.12 | 1.00 ± 0.02 | 1.11 ± 0.03 | 4.53 ± 0.27 | Mixoploidy |
E. tampensis ‘Gem’ | 6061.50 ± 165.40 | 0.96 ± 0.04 | 1.07 ± 0.04 | 4.64 ± 0.14 | Diploidy |
E. granitica | 10,194.17 ± 102.38 | 1.62 ± 0.05 | 1.79 ± 0.05 | 4.44 ± 0.06 | Triploidy |
E. Orchid Jungle | 6421.67 ± 94.03 | 1.02 ± 0.03 | 1.13 ± 0.03 | 4.15 ± 0.59 | Diploidy |
E. Shinfong Smile | 6181.83 ± 156.86 | 0.98 ± 0.04 | 1.09 ± 0.04 | 4.95 ± 0.03 | Diploidy |
Eny. Circus Lady ‘Coastal Star’ | 9708.17 ± 122.68 | 1.54 ± 0.04 | 1.71 ± 0.04 | 4.59 ± 0.05 | Triploidy |
Gcy. Kyoguchi ‘Fumi’ | 11,008.67 ± 157.33 | 1.74 ± 0.01 | 1.94 ± 0.01 | 4.63 ± 0.18 | Triploidy |
Robertsara Green Wonder | 18,351.50 ± 421.00 | 2.91 ± 0.07 | 3.23 ± 0.08 | 3.31 ± 0.12 | Tetraploidy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Leng, Q.; Lu, J.; Xu, S.; Peng, D.; Yin, J.; Niu, J. Karyotype Analysis and Genome Size Estimation Using Flow Cytometry of the Genus Encyclia Hook. (Orchidaceae: Laeliinae). Diversity 2025, 17, 57. https://doi.org/10.3390/d17010057
Zhou C, Leng Q, Lu J, Xu S, Peng D, Yin J, Niu J. Karyotype Analysis and Genome Size Estimation Using Flow Cytometry of the Genus Encyclia Hook. (Orchidaceae: Laeliinae). Diversity. 2025; 17(1):57. https://doi.org/10.3390/d17010057
Chicago/Turabian StyleZhou, Chengcheng, Qingyun Leng, Jinping Lu, Shisong Xu, Donghui Peng, Junmei Yin, and Junhai Niu. 2025. "Karyotype Analysis and Genome Size Estimation Using Flow Cytometry of the Genus Encyclia Hook. (Orchidaceae: Laeliinae)" Diversity 17, no. 1: 57. https://doi.org/10.3390/d17010057
APA StyleZhou, C., Leng, Q., Lu, J., Xu, S., Peng, D., Yin, J., & Niu, J. (2025). Karyotype Analysis and Genome Size Estimation Using Flow Cytometry of the Genus Encyclia Hook. (Orchidaceae: Laeliinae). Diversity, 17(1), 57. https://doi.org/10.3390/d17010057