Emerging Marine Nematodes as Model Organisms: Which Species for Which Question?
Abstract
:1. Introduction
2. Snapshot of Model Organisms Within Marine Nematodes
3. Discussion
3.1. Which Marine Nematodes Are the Best Candidates as Model Organisms?
3.2. Which Nematode Candidate Can Be a Model Organism for Which Question?
3.2.1. Functional Redundancy and Ecosystem Dynamics
3.2.2. Climate Change and Adaptations to Its Escalating Environmental Effects
3.2.3. Host–Microbe Interactions and Symbiosis
3.2.4. Ecotoxicology and Pollution Monitoring
3.2.5. Biotechnological and Biomedical Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, P.S. ‘Model organisms’ in the light of evolution. Curr. Biol. 2016, 26, R649–R650. [Google Scholar] [CrossRef]
- Ankeny, R.A.; Leonelli, S. Model Organisms. Elements in the Philosophy of Biology; Cambridge University Press: Cambridge, UK, 2020; p. 90. [Google Scholar]
- Govind, P. Model organisms used in molecular biology or medical research. Int. Res. J. Pharm. 2011, 11, 62–65. [Google Scholar]
- Sbrocca, C.; De Troch, M.; Losi, V.; Grassi, E.; Balsamo, M.; Semprucci, F. Habitat-diversity relations between sessile macrobenthos and benthic copepods in the rocky shores of a Marine Protected Area. Water 2021, 13, 1020. [Google Scholar] [CrossRef]
- Semprucci, F.; Appolloni, L.; Grassi, E.; Donnarumma, L.; Cesaroni, L.; Tirimberio, G.; Chianese, E.; Di Donato, P.; Russo, G.F.; Balsamo, M.; et al. Antarctic Special Protected Area 161 as a reference to assess the effects of anthropogenic and natural impacts on meiobenthic assemblages. Diversity 2021, 13, 626. [Google Scholar] [CrossRef]
- Cocozza di Montanara, A.; Sandulli, R. The global research on meiofauna associated with seagrasses: A bibliometric network analysis. Ecol. Quest. 2023, 35, 1–15. [Google Scholar] [CrossRef]
- Cocozza di Montanara, A.; Baldrighi, E.; López Correa, M.; Chianese, E.; Appolloni, L.; Simoncini, N.; Sandulli, R.; Zeppilli, D.; Semprucci, F.; Gambi, M.C.; et al. Meiobenthos and ocean acidification: Effects on meiobenthic communities inhabiting Mediterranean cold shallow CO2-vents. Estuar. Coast. Shelf Sci. 2024, 300, 108730. [Google Scholar] [CrossRef]
- Giere, O. Meiobenthology: The Microscopic Motile Fauna in Aquatic Sediments, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Giere, O.; Schratzberger, M. New Horizons in Meiobenthos Research: Profiles, Patterns and Potentials; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Semprucci, F.; Catani, L.; Grassi, E.; Jakubcsiková, M.; Čerevková, A. Simple, inexpensive, and rapid approach to detect changes in the structure of soil free-living nematodes. Helminthologia 2024, 61, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Cocozza di Montanara, A.; Baldrighi, E.; Franzo, A.; Catani, L.; Grassi, E.; Sandulli, R.; Semprucci, F. Free-living nematodes research: State of the art, prospects, and future directions. A bibliometric analysis approach. Ecol. Inform. 2022, 72, 101891. [Google Scholar] [CrossRef]
- Baldrighi, E.; Semprucci, F.; Franzo, A.; Cvitkovic, I.; Bogner, D.; Despalatovic, M.; Berto, D.; Malgorzata Formalewicz, M.; Scarpato, A.; Frapiccini, E.; et al. Meiofaunal communities in four Adriatic ports: Baseline data for risk assessment in ballast water management. Mar. Pollut. Bull. 2019, 147, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Semprucci, F.; Raehyuk, J.; Kim, K.; Lee, S.; Jeon, D.; Yoo, H.; Kim, J.; Kim, J.; Yeom, J.; et al. Meiobenthic nematodes in the assessment of the relative impact of human activities on coastal marine ecosystems. Environ. Monit. Assess. 2020, 192, 81. [Google Scholar] [CrossRef]
- Losi, V.; Grassi, E.; Balsamo, M.; Rocchi, M.; Gaozza, L.; Semprucci, F. Changes in taxonomic structure and functional traits of nematodes as tools in the assessment of port impact. Estuar. Coast. Shelf Sci. 2021, 260, 107524. [Google Scholar] [CrossRef]
- Sulston, J.E.; Schierenberg, E.; White, J.G.; Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 1983, 100, 64–119. [Google Scholar] [CrossRef] [PubMed]
- Corsi, A.K.; Wightman, B.; Chalfie, M.A. Transparent window into biology: A primer on Caenorhabditis elegans. Genetics 2015, 200, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Serobyan, V.; Ragsdale, E.J.; Müller, M.R.; Sommer, R.J. Feeding plasticity in the nematode Pristionchus pacificus is influenced by sex and social context and is linked to developmental speed. Evol. Dev. 2013, 15, 161–170. [Google Scholar] [CrossRef]
- Werner, M.S.; Sieriebriennikov, B.; Loschko, T.; Namdeo, S.; Lenuzzi, M.; Dardiry, M.; Renahan, T.; Sharma, D.R.; Sommer, R.J. Environmental influence on Pristionchus pacificus mouth form through different culture methods. Sci. Rep. 2017, 7, 7207. [Google Scholar] [CrossRef] [PubMed]
- Vranken, G.; Vanderhaeghen, R.; Heip, C.H.R. Toxicity of cadmium to free-living marine and brackish water nematodes (Monhystera microphthalma, Monhystera disjuncta, Pellioditis marina). Dis. Aquat. Org. 1985, 1, 49–58. [Google Scholar] [CrossRef]
- Houthoofd, W.; Jacobsen, K.; Mertens, C.; Vangestel, S.; Coomans, A. Embryonic cell lineage of the marine nematode Pellioditis marina. Dev. Biol. 2003, 258, 57–69. [Google Scholar] [CrossRef]
- Derycke, S.; Van Vynckt, R.; Vanoverbeke, J.; Vincx, M.; Moens, T. Colonization patterns of Nematoda on decomposing algae in the estuarine environment: Community assembly and genetic structure of the dominant species Pellioditis marina. Limnol. Oceanogr. 2007, 52, 992–1001. [Google Scholar] [CrossRef]
- Derycke, S.; Fonseca, G.; Vierstraete, A.; Vanfleteren, J.; Vincx, M.; Moens, T. Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morphological tools. Zool. J. Linn. Soc. 2008, 152, 1–15. [Google Scholar] [CrossRef]
- Derycke, S.; De Meester, N.; Rigaux, A.; Creer, S.; Bik, H.; Thomas, W.K.; Moens, T. Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Mol. Ecol. 2016, 25, 2093–2110. [Google Scholar] [CrossRef]
- Monteiro, L.C.; Van Butsel, J.; De Meester, N.; Traunspurger, W.; Derycke, S.; Moens, T. Differential heavy-metal sensitivity in two cryptic species of the marine nematode Litoditis marina as revealed by developmental and behavioural assays. J. Exp. Mar. Biol. Ecol. 2018, 502, 203–210. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, P.; Zhang, L. Genome-wide transcriptional responses of marine nematode Litoditis marina to hyposaline and hypersaline stresses. Front. Physiol. 2021, 12, 672099. [Google Scholar] [CrossRef] [PubMed]
- Francolino, B.Y.; Valdes, Y.; Alexandre de Luna, C.; Lobato de França, F.J.; Moens, T.; dos Santos, G.A.P. Short-term lethal and sublethal atrazine effects on Litoditis marina: Towards a nematode model for marine toxicity assessment? Ecol. Indic. 2021, 126, 107642. [Google Scholar] [CrossRef]
- Guden, R.M.; Derycke, S.; Moens, T. A multi-faceted approach to understand how resource diversity can mediate the coexistence of cryptic marine nematode species. Front. Mar. Sci. 2021, 8, 777425. [Google Scholar] [CrossRef]
- Vafeiadou, A.-M.; Derycke, S.; Rigaux, A.; De Meester, N.; Guden, R.M.; Moens, T. Microbiome differentiation among coexisting nematode species in estuarine microhabitats: A metagenetic analysis. Front. Mar. Sci. 2022, 9, 881566. [Google Scholar] [CrossRef]
- Vafeiadou, A.; Geldhof, K.; Barhdadi, W.; Baetens, J.M.; De Baets, B.; Moens, T.; Daly, A.J. Temperature-driven dynamics: Unraveling the impact of climate change on cryptic species interactions within the Litoditis marina complex. PeerJ 2024, 12, e17324. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, F.; Gao, S.; Liang, Y.; Long, H.; Lv, Z.; Su, Y.; Ye, N.; Zhang, L.; Zhao, C.; et al. Biodiversity-based development and evolution: The emerging research systems in model and non-model organisms. Sci. China Life Sci. 2021, 64, 1236–1280. [Google Scholar] [CrossRef] [PubMed]
- Buys, B.; Derycke, S.; De Meester, N.; Moens, T. Colonization of macroalgal deposits by estuarine nematodes through air and potential for rafting inside algal structures. PLoS ONE 2021, 16, e0246723. [Google Scholar] [CrossRef] [PubMed]
- Van Campenhout, J.; Derycke, S.; Tchesunov, A.; Portnova, D.; Vanreusel, A. The Halomonhystera disjuncta population is homogeneous across the Håkon Mosby mud volcano (Barents Sea) but is genetically differentiated from its shallow-water relatives. J. Zool. Syst. Evol. Res. 2014, 52, 203–216. [Google Scholar]
- Tchesunov, A.V.; Portnova, D.A.; van Campenhout, J. Description of two free-living nematode species of Halomonhystera disjuncta complex (Nematoda: Monhysterida) from two peculiar habitats in the sea. Helgol. Mar. Res. 2015, 69, 57–85. [Google Scholar] [CrossRef]
- Grzelak, K.; Kotwicki, L. Halomonhystera disjuncta—A young-carrying nematode first observed for the Baltic Sea in deep basins within chemical munitions disposal sites. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 128, 131–135. [Google Scholar] [CrossRef]
- Mevenkamp, L.; Brown, A.; Hauton, C.; Kordas, A.; Thatje, S.; Vanreusel, A. Hydrostatic pressure and temperature affect the tolerance of the free-living marine nematode Halomonhystera disjuncta to acute copper exposure. Aquat. Toxicol. 2017, 192, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Vafeiadou, A.-M.; Moens, T. Effects of temperature and interspecific competition on population fitness of free-living marine nematodes. Ecol. Indic. 2021, 120, 106958. [Google Scholar] [CrossRef]
- Allouche, M.; Nasri, A.; Harrath, A.H.; Mansour, L.; Alwasel, S.; Beyrem, H.; Bourioug, M.; Geret, F.; Boufahja, F. New protocols for the selection and rearing of Metoncholaimus pristiurus and the first evaluation of oxidative stress biomarkers in meiobenthic nematodes. Environ. Pollut. 2020, 263 Pt B, 114529. [Google Scholar] [CrossRef]
- Allouche, M.; Ishak, S.; Ben Ali, M.; Hedfi, A.; Almalki, M.; Karachle, P.K.; Harrath, A.H.; Abu-Zied, R.H.; Badraoui, R.; Boufahja, F. Molecular interactions of polyvinyl chloride microplastics and beta-blockers (Diltiazem and Bisoprolol) and their effects on marine meiofauna: Combined in vivo and modeling study. J. Hazard. Mater. 2022, 431, 128609. [Google Scholar] [CrossRef] [PubMed]
- Wakkaf, T.; Allouche, M.; Harrath, A.H.; Mansour, L.; Alwasel, S.; Ansari, K.G.M.T.; Beyrem, H.; Sellami, B.; Boufahja, F. The individual and combined effects of cadmium, Polyvinyl chloride (PVC) microplastics and their polyalkylamines modified forms on meiobenthic features in a microcosm. Environ. Pollut. 2020, 266, 115263. [Google Scholar] [CrossRef]
- Nasri, A.; Hannachi, A.; Allouche, M.; Barhoumi, B.; Saidi, I.; Dallali, M.; Harrath, A.H.; Mansour, L.; Mahmoudi, E.; Beyrem, H.; et al. Chronic ecotoxicity of ciprofloxacin exposure on taxonomic diversity of a meiobenthic nematode community in microcosm experiments. J. King Saud Univ. 2020, 32, 1470–1475. [Google Scholar] [CrossRef]
- Ben Ali, M.; Hedfi, A.; Almalki, M.; Karachle, P.K.; Boufahja, F. Toxicity of hydroxychloroquine, a potential treatment for COVID-19, on free-living marine nematodes. Mar. Pollut. Bull. 2021, 167, 112361. [Google Scholar] [CrossRef] [PubMed]
- Hedfi, A.; Ali, M.B.; Noureldeen, A.; Darwish, H.; Saif, T.; Albogami, B.; Altowairqi, T.K.; Boufahja, F. Impact of treated sewage on meiobenthic nematodes: A case study from the Tunisian Refining Industries Company. Braz. J. Biol. 2021, 82, e246116. [Google Scholar] [CrossRef]
- Boufahja, F.; Hedfi, A.; Amorri, J.; Aïssa, P.; Beyrem, H.; Mahmoudi, E. Examination of the bioindicator potential of Oncholaimus campylocercoides (Oncholaimidae, Nematoda) from Bizerte bay (Tunisia). Ecol. Indic. 2011, 11, 1139–1148. [Google Scholar] [CrossRef]
- Thiermann, F.; Vismann, B.; Giere, O. Sulphide tolerance of the marine nematode Oncholaimus campylocercoides—A result of internal sulphur formation? Mar. Ecol. Prog. Ser. 2000, 193, 251–259. [Google Scholar] [CrossRef]
- Allouche, M.; Nasri, A.; Harrath, A.H.; Mansour, L.; Alwasel, S.; Beyrem, H.; Plăvan, G.; Rohal-Lupher, M.; Boufahja, F. Meiobenthic nematode Oncholaimus campylocercoides as a model in laboratory studies: Selection, culture, and fluorescence microscopy after exposure to phenanthrene and chrysene. Environ. Sci. Pollut. Res. Int. 2021, 28, 29484–29497. [Google Scholar] [CrossRef] [PubMed]
- Bellec, L.; Bonavita, M.-A.C.; Hourdez, S.; Jebbar, M.; Tasiemski, A.; Durand, L.; Gayet, N.; Zeppilli, D. Chemosynthetic ectosymbionts associated with a shallow-water marine nematode. Sci. Rep. 2019, 9, 7019. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.; Zeppilli, D.; Boidin-Wichlacz, C.; Sandulli, R.; Tasiemski, A. Screening for antibacterial molecules in meiobenthic nematodes belonging to the Oncholaimidae family. Cah. Biol. Mar. 2020, 62, 129–142. [Google Scholar]
- Bellec, L.; Cambon-Bonavita, M.-A.; Cueff-Gauchard, V.; Durand, L.; Gayet, N.; Zeppilli, D. A nematode of the Mid-Atlantic Ridge hydrothermal vents harbors a possible symbiotic relationship. Front. Microbiol. 2018, 9, 2246. [Google Scholar] [CrossRef]
- Zeppilli, D.; Bellec, L.; Cambon-Bonavita, M.A.; Decraemer, W.; Fontaneto, D.; Fuchs, S.; Gayet, N.; Mandon, P.; Michel, L.N.; Portail, M.; et al. Ecology and trophic role of Oncholaimus dyvae sp. nov. (Nematoda: Oncholaimidae) from the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge). BMC Zool. 2019, 4, 6. [Google Scholar] [CrossRef]
- Warwick, R.M. The influence of temperature and salinity on energy partitioning in the marine nematode Diplolaimelloides bruciei. Oecologia 1981, 51, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Moens, T.; Vincx, M. On the cultivation of free-living marine and estuarine nematodes. Helgoländer Meeresunters. 1998, 52, 115–139. [Google Scholar] [CrossRef]
- De Mesel, I.; Derycke, S.; Swings, J.; Vincx, M.; Moens, T. Influence of bacterivorous nematodes on the decomposition of cordgrass. J. Exp. Mar. Biol. Ecol. 2003, 296, 227–242. [Google Scholar] [CrossRef]
- De Mesel, I.; Derycke, S.; Moens, T.; Van der Gucht, K.; Vincx, M.; Swings, J. Top-down impact of bacterivorous nematodes on the bacterial community structure: A microcosm study. Environ. Microbiol. 2004, 6, 733–744. [Google Scholar] [CrossRef]
- Dos Santos GA, P.; Derycke, S.; Fonsêca-Genevois, V.G.; Coelho LC, B.B.; Correia MT, S.; Moens, T. Differential effects of food availability on population growth and fitness of three species of estuarine, bacterial-feeding nematodes. J. Exp. Mar. Biol. Ecol. 2008, 355, 27–40. [Google Scholar] [CrossRef]
- Hubas, C.; Sachidhanandam, C.; Rybarczyk, H.; Lubarsky, H.; Rigaux, A.; Moens, T.; Paterson, D. Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms. Mar. Ecol. Prog. Ser. 2010, 419, 85–94. [Google Scholar] [CrossRef]
- Vafeiadou, A.-M.; Chintiroglou, C.; Moens, T. Effects of an increased temperature regime on the population dynamics and species interactions of marine nematodes. J. Exp. Mar. Biol. Ecol. 2018, 502, 142–152. [Google Scholar] [CrossRef]
- Sahraean, N.; Van Campenhout, J.; Rigaux, A.; Mosallanejad, H.; Leliaert, F.; Moen, T. Lack of population genetic structure in the marine nematodes Ptycholaimellus pandispiculatus and Terschellingia longicaudata in beaches of the Persian Gulf, Iran. Mar. Ecol. 2017, 38, e12426. [Google Scholar] [CrossRef]
- Badraoui, R.; Allouche, M.; El Ouaer, D.; Siddiqui, A.J.; Ishak, S.; Hedfi, A.; Beyrem, H.; Pacioglu, O.; Rudayni, H.A.; Boufahja, F. Ecotoxicity of chrysene and phenanthrene on meiobenthic nematodes with a case study of Terschellingia longicaudata: Taxonomics, toxicokinetics, and molecular interactions modelling. Environ. Pollut. 2023, 316 Pt 1, 120459. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, G.; Decraemer, W. State of the art of the free-living marine Monhysteridae (Nematoda). J. Mar. Biol. Assoc. U. K. 2008, 88, 1371. [Google Scholar] [CrossRef]
- Oliveira, N.R. Diplolaimella Dievengatensis (Nematoda: Monhysteridae) as Model Organism in Ecotoxicity Assay. Master’s Dissertation, Instituto de Biociências, São Paulo, Brazil, 2017. [Google Scholar] [CrossRef]
- Oliveira, N.R.; Cunha, B.P.; Vilas-Boas, A.C.; Gallucci, F.; Monteiro, L.; Custódio, M.R.; Fonseca, G. Establishing the baselines of Diplolaimella dievengatensis (Nematoda: Monhysteridae) for life-history experiments. Zool. Anz. 2021, 293, 303–313. [Google Scholar] [CrossRef]
- Bayer, C.; Heindl, N.R.; Rinke, C.; Lücker, S.; Ott, J.A.; Bulgheresi, S. Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea. Environ. Microbiol. Rep. 2009, 1, 136–144. [Google Scholar] [CrossRef]
- Murfin, K.E.; Dillman, A.R.; Foster, J.M.; Bulgheresi, S.; Slatko, B.E.; Sternberg, P.W.; Goodrich-Blair, H. Nematode-bacterium symbioses—Cooperation and conflict revealed in the “omics” age. Biol. Bull. 2012, 223, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Tchesunov, A.V.; Ingels, J.; Popova, E.V. Marine free-living nematodes associated with symbiotic bacteria in deep-sea canyons of the northeast Atlantic Ocean. J. Mar. Biol. Assoc. 2012, 92, 1257. [Google Scholar] [CrossRef]
- Ott, J.A.; Bulgheresi, S.; Gruber-Vodicka, H.; Gruhl, A.; König, L.; Leisch, N. Meiofauna meets microbes—Chemosynthetic symbioses. In New Horizons in Meiobenthos Research; Giere, O., Schratzberger, M., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Atkinson, H.J. The role of pharyngeal haemoglobin in the feeding of the marine nematode, Enoplus brevis. J. Zool. 1977, 183, 465–471. [Google Scholar] [CrossRef]
- Voronov, D.A.; Panchin, Y.V. Cell lineage in marine nematode Enoplus brevis. Development 1998, 125, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.R.; Moens, T.; Fonseca, G.; Nagata, R.M.; Custódio, M.R.; Gallucci, F. Response of life-history traits of estuarine nematodes to the surfactant sodium dodecyl sulfate. Aquat. Toxicol. 2020, 227, 105609. [Google Scholar] [CrossRef] [PubMed]
- Moens, T.; Verbeeck, L.; De Maeyer, A.; Swings, J.; Vincx, M. Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar. Ecol. Prog. Ser. 1999, 176, 165–178. [Google Scholar] [CrossRef]
- De Mesel, I.; Derycke, S.; Swings, J.; Vincx, M.; Moens, T. Role of nematodes in decomposition processes: Does within-trophic group diversity matter? Mar. Ecol. Prog. Ser. 2006, 321, 157–166. [Google Scholar] [CrossRef]
- De Meester, N.; Derycke, S.; Moens, T. Salinity effects on the coexistence of cryptic species: A case study on marine nematodes. Mar. Biol. 2011, 158, 2717–2726. [Google Scholar] [CrossRef]
- De Meester, N.; Derycke, S.; Rigaux, A.; Moens, T. Active dispersal is differentially affected by inter-and intraspecific competition in closely related nematode species. Oikos 2015, 124, 561–570. [Google Scholar] [CrossRef]
- De Meester, N.; Derycke, S.; Rigaux, A.; Moens, T. Temperature and salinity induce differential responses in life histories of cryptic nematode species. J. Exp. Mar. Biol. Ecol. 2015, 472, 54–62. [Google Scholar] [CrossRef]
- De Meester, N.; dos Santos, G.A.P.; Rigaux, A.; Valdes, Y.; Derycke, S.; Moens, T. Daily temperature fluctuations alter interactions between closely related species of marine nematodes. PLoS ONE 2015, 10, e0131625. [Google Scholar] [CrossRef] [PubMed]
- Guden, R.M.; Vafeiadou, A.-M.; De Meester, N.; Derycke, S.; Moens, T. Living apart-together: Microhabitat differentiation of cryptic nematode species in a saltmarsh habitat. PLoS ONE 2018, 13, e0204750. [Google Scholar] [CrossRef]
- De Meester, N.; Gingold, R.; Rigaux, A.; Derycke, S.; Moens, T. Cryptic diversity and ecosystem functioning: A complex tale of differential effects on decomposition. Oecologia 2016, 182, 559–571.22. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, P.; Xue, B.; Cao, X.; Ren, X.; Wang, L.; Sun, Y.; Yang, H.; Zhang, L. Establishment of a marine nematode model for animal functional genomics, environmental adaptation and developmental evolution. BioRxiv 2020. [Google Scholar] [CrossRef]
- Bellec, L.; Cambon-Bonavita, M.-A.; Durand, L.; Aube, J.; Gayet, N.; Sandulli, R.; Brandily, C.; Zeppilli, D. Microbial communities of the shallow-water hydrothermal vent near Naples, Italy, and chemosynthetic symbionts associated with a free-living marine nematode. Front. Microbiol. 2020, 11, 2023. [Google Scholar] [CrossRef] [PubMed]
- Tarr, D.E.K. Nematode antimicrobial peptides. Invertebr. Surviv. J. 2012, 9, 122–133. [Google Scholar]
- Cobb, N.A. Metoncholaimus pristiurus, a nematode suitable for laboratory courses in zoology. J. Wash. Acad. Sci. 1932, 22, 344–354. [Google Scholar]
- Hedfi, A.; Ali, M.B.; Noureldeen, A.; Almalki, M.; Rizk, R.; Mahmoudi, E.; Plăvan, G.; Pacioglu, O.; Boufahja, F. Effects of benzo(a)pyrene on meiobenthic assemblage and biochemical biomarkers in an Oncholaimus campylocercoides (Nematoda) microcosm. Environ. Sci. Pollut. Res. 2022, 29, 16529–16548. [Google Scholar] [CrossRef] [PubMed]
- Ott, J.A.; Bright, M.; Bulgheresi, S. Marine microbial thiotrophic ectosymbioses. Oceanogr. Mar. Biol. Annu. Rev. 2004, 42, 95–118. [Google Scholar]
- Ott, J.A.; Bright, M.; Bulgheresi, S. Symbioses between marine nematodes and sulphur-oxidizing chemoautotrophic bacteria. Symbiosis 2004, 36, 102–126. [Google Scholar] [CrossRef]
- Bauer-Nebelsick, M.; Blumer, M.; Urbancik, W.; Ott, J.A. The glandular sensory organ of Desmodoridae (Nematoda): Ultrastructure and phylogenetic implications. Invertebr. Biol. 1995, 114, 211–219. [Google Scholar] [CrossRef]
- Bulgheresi, S.; Gruber-Vodicka, H.R.; Heindl, N.R.; Dirks, U.; Kostadinova, M.; Breiteneder, H.; Ott, J.A. Sequence variability of the pattern recognition receptor Mermaid mediates specificity of marine nematode symbioses. ISME J. 2011, 5, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A. Morphological and Molecular Analysis of Laxus oneistus juveniles and Their Bacterial Ectosymbiont; Universität Wien: Wien, Austria, 2013; p. 46. [Google Scholar]
- Ott, J.; Novak, R.; Schiemer, F.; Hentschel, U.; Nebelsick, M.; Polz, M. Tackling the sulfide gradient: A novel strategy involving marine nematodes and chemoautotrophic Ectosymbionts. Mar. Ecol. 1991, 12, 261–279. [Google Scholar] [CrossRef]
- Heppert, J.K.; Ransone, E.M.; Grossman, A.S.; Mauer, T.J.; Goodrich-Blair, H. Nematode models of symbiosis. In Nematodes as Biological Models; Glazer, I., Shapiro-Ilan, D., Sternberg, P., Eds.; CABI: Wallingford, UK, 2022. [Google Scholar] [CrossRef]
- Nabatov, A.A.; de Jong, M.A.; de Witte, L.; Bulgheresi, S.; Geijtenbeek, T.B. C-type lectin Mermaid inhibits dendritic cell mediated HIV-1 transmission to CD4+ T cells. Virology 2008, 378, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Ingels, J.; Zeppilli, D.; Giere, O. Meiofauna—Adapted to life at the limits. In New Horizons in Meiobenthos Research; Giere, O., Schratzberger, M., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Musat, N.; Giere, O.; Gieseke, A.; Thiermann, F.; Amann, R.; Dubilier, N. Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas. Environ. Microbiol. 2007, 9, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Howell, R. The incidence of heavy metal pollutants in Enoplus brevis (Bastian) and Enoplus communis (Bastian) with some observations on toxicity, accumulation, depuration and metal binding by proteins. Ph.D. Thesis, University of Newcastle upon Tyne, Newcastle upon Tyne, UK, 1982. [Google Scholar]
- Howell, R. Acute toxicity of heavy metals to two species of marine nematodes. Mar. Environ. Res. 1984, 11, 153–161. [Google Scholar] [CrossRef]
- Boufahja, F.; Semprucci, F.; Beyrem, H. An experimental protocol to select nematode species from an entire community using progressive sedimentary enrichment. Ecol. Indic. 2016, 60, 292–309. [Google Scholar] [CrossRef]
- Grassi, E.; Montefalcone, M.; Cesaroni, L.; Guidi, L.; Balsamo, M.; Semprucci, F. Taxonomic and functional nematode diversity in Maldivian coral degradation zones: Patterns across reef typologies and depths. PeerJ 2022, 10, e13644. [Google Scholar] [CrossRef]
- Grassi, E.; Catani, L.; Magni, P.; Gravina, M.F.; Semprucci, F. Taxonomic and functional diversity of nematode fauna: Two sides of the same coin in the ecological quality assessment of transitional environments. Estuar. Coast. Shelf Sci. 2023, 295, 108550. [Google Scholar] [CrossRef]
- Moens, T.; Vincx, M. Temperature and salinity constraints on the life cycle of two brackish-water nematode species. J. Exp. Mar. Biol. Ecol. 2000, 243, 115–135. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.K.; Manohar, M.; Artyukhin, A.B.; Kumari, A.; Tenjo-Castano, F.J.; Nguyen, H.; Routray, P.; Choe, A.; Klessig, D.F.; et al. Nematode signaling molecules are extensively metabolized by animals, plants, and microorganisms. ACS Chem. Biol. 2021, 16, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, L.; Traunspurger, W.; Roeleveld, K.; Lynen, F.; Moens, T. Direct toxicity of the water-soluble fractions of a crude and a diesel-motor oil on the survival of free-living nematodes. Ecol. Indic. 2018, 93, 13–23. [Google Scholar] [CrossRef]
- Pontes, L.P.; Vafeiadou, A.M.; de França, F.J.L.; Cavalcante, R.A.; de Araújo França, D.A.; Brito, C.M.; Alves, R.N.; de Carvalho, P.S.M.; dos Santos, G.A.P. Toxic effects of phenanthrene intensify with an increase of temperature for the populations of a free-living nematode. Ecol. Indic. 2021, 120, 106868. [Google Scholar] [CrossRef]
- Boufahja, F.; Semprucci, F. Stress-induced selection of a single species from an entire meiobenthic nematode assemblage: Is this possible using iron enrichment and does pre-exposure affect the ease of the process? Environ. Sci. Pollut. Res. 2015, 22, 1979–1998. [Google Scholar] [CrossRef] [PubMed]
Free-Living Marine Nematodes | Relevant Available Information | Source |
---|---|---|
Litoditis marina | ||
Distribution | Cosmopolitan | [19,20,21,22,23,24,25,26,27,28,29,30,31] |
Typical habitat | Littoral zone of coast and estuaries, macrophytes washed ashore and holdfasts of living macroalgae | |
Feeding | Bacterial biofilms that grow on the algal talli | |
Cryptic species occurrence | Occurrence of 10 cryptic species with different functions (e.g., feeding habits) | |
Brood size and mating system | Up to 600 eggs; internal fertilization | |
Living mode | High dispersal rate via seawater circulation and aerial transport, short generation time, euryhaline and eurythermal, presence of the Dauer stage under harsh conditions | |
Promising characteristics | Successfully cultivated in laboratory, well-defined embryonic cell lineage, short generation time, clear genetic background and sequenced genome, CRISPR/Cas9 genome editing. L. marina PmIII cryptic species is the most suitable model. Distinguished intraspecific microbiome among L. marina cryptic species | |
Possible application mode | Molecular biology, cell biology, physiology and behaviour regulation, identification of the key genes and genetic pathways involved in the osmoregulation, sympatry speciation phenomena, role in the ecosystem functioning control (distinct influence on algae decomposition processes and microbial assemblages), ecotoxicology, sensitivity to heavy metals and climate change effects | |
Halomonhystera disjuncta | ||
Distribution | Cool waters of temperate and subpolar zones | [21,32,33,34,35,36] |
Typical habitat | Both shallow-water and deep-sea; macroalgal holdfasts and wrack deposits; organically enriched substrata | |
Feeding | bacterivorous | |
Cryptic species occurrence | Occurrence of five cryptic species | |
Brood size and mating system | Greatest at 16 °C: up to 600 eggs; internal fertilization | |
Living mode | tolerance to temperature changes and high concentrations of heavy metals; ovoviviparous females observed in unfavourable conditions | |
Promising characteristics | It is successfully cultivated in laboratory. In particular, the cryptic species Gd1 is successful used in thermal stress experiments because it has a wide geographic distribution and can tolerate a wide temperature range | |
Possible application mode | Previsions of climate change effects, interspecific interactions between cryptic species, response to different environmental conditions (i.e., S; T; sulphides) | |
Metoncholaimus pristiurus | ||
Distribution | Cosmopolitan | [37,38,39,40,41,42] |
Typical habitat | Widely distributed, common in stagnant marine waters with black muddy sediments and organic detritus | |
Feeding | Facultative predator | |
Cryptic species occurrence | NONE | |
Brood size and mating system | Up to 40 eggs; internal fertilization | |
Living mode | Opportunistic lifestyle | |
Promising characteristics | Rearing in laboratory conditions, large sized nematode, good for developing ecotoxicological methods/tests not expensive and simple; high tolerance in changing sediment grain size | |
Possible application mode | Biomarker approach applicable (discernible oxidative stress responses are valid for catalase and glutathione S-transferase), ecotoxicology applications | |
Oncholaimus campylocercoides | ||
Distribution | Cosmopolitan | [43,44,45] |
Typical habitat | Lagoons and marine waters; shallow water hydrothermal vents; brackish water | |
Feeding | Facultative predators | |
Cryptic species occurrence | NONE | |
Brood size and mating system | ca. 12; internal fertilization | |
Living mode | Tolerant to sulfidic conditions. Association with thiosymbion bacteria are not documented in the literature but cannot be excluded. They can survive at elevated temperatures (25 to 30 °C), in pH ranging from 6.5 to 7, salinities ranging from 39 to 46 ppt, | |
Promising characteristics | Abundant in lagoonal and marine waters; big sized nematode; rapidly reproducing species; adaptation to sulfidic conditions in form of viscous inclusions in the epidermis | |
Possible application mode | Suggested a model of sulphide metabolism; large application in ecotoxicology assay | |
Metoncholaimus albidus | ||
Distribution | Cosmopolitan | [46,47] |
Typical habitat | Among small stones and sand in tide pools; coarse sediment Shallow waters; hydrothermal vents also in deep sea | |
Feeding | Facultative predator | |
Cryptic species occurrence | NONE | |
Brood size and mating system | Up to 3 eggs; internal fertilization | |
Living mode | Tolerant to sulfidic conditions thanks to the symbiosis with thiosymbion bacteria | |
Promising characteristics | Big sized worm, abundant and in high biomass within the sediments. It has never been reared, but specimens can be maintained alive in laboratory conditions. Distinct microbiome (Campylobacterota and Gammaproteobacteria) | |
Possible application mode | Interaction between nematodes and bacteria, evolution of symbiosis, transmission mode of symbionts, microbiome role against pathogenic infections characterization; AMPs extraction | |
Oncholaimus dyvae | ||
Distribution | Associated with the Bathymodiolus byssus (MAR) | [48,49] |
Typical habitat | Lucky Strike vent field on the Mid-Atlantic Ridge (MAR) at 1700 m water depth | |
Feeding | Detritivore/bacterivore, which partly relies on free-living chemoautotroph microbes | |
Cryptic species occurrence | NONE | |
Brood size and mating system | Gravid female with 2 fertilized eggs | |
Living mode | Able to adapt and be very abundant in active vent areas due to their association with chemosynthetic microorganisms (Epsilonproteobacteria and Gammaproteobacteria) | |
Promising characteristics | Large sized nematode, abundant and with high biomass in vent bottoms, interesting symbiotic association with Epsilonproteobacteria and Gammaproteobacteria | |
Possible application mode | Interaction between nematodes and bacteria, evolution of host-symbiont dependence, transmission mode of symbionts, symbiont’s role in the prevention of pathogens | |
Diplolaimelloides spp. | ||
Distribution | Cosmopolitan | [50,51,52,53,54,55,56] |
Typical habitat | Commonly found on decaying cordgrass leaves, organically enriched substrata, mainly associated with macrophytes, cyanophytes | |
Feeding | Bacterivorous—selective and non-selective | |
Cryptic species occurrence | NONE | |
Brood size and mating system | Up to 47 eggs; internal fertilization | |
Living mode | Diplolaimelloides spp. generally dominate the nematode community on decaying phytodetritus in salt marshes | |
Promising characteristics | Diplolaimelloides spp. are easily maintained in culture, easy measurements of the population growth, generation time, fecundity and respiration of this species in relation to different environmental parameters | |
Possible application mode | Role in the ecosystem functioning control (species-specific influence on the decomposition process of macrophytes, bacterial communities, inhibition and stimulation of nutrient mineralization, bio-stabilization of sediments), effects of global climate change on benthic system, model for study of interspecific interactions and effects of food availability on population development | |
Terschellingia longicaudata | ||
Distribution | Cosmopolitan | [57,58] |
Typical habitat | Intertidal and shallow subtidal sediments; rich in organic matter | |
Feeding | Chemoautotrophic bacteria | |
Cryptic species occurrence | YES | |
Brood size and mating system | N/A; internal fertilization | |
Living mode | Endobenthic | |
Promising characteristics | Abundant benthic nematode species | |
Diplolaimella dievegantesis | ||
Distribution | Cosmopolitan | [59,60,61] |
Typical habitat | Intertidal estuarine sand bank | |
Feeding | bacterivorous | |
Cryptic species occurrence | Possible occurrence | |
Brood size and mating system | Uterine cells with mostly one thin-shelled (0.5 pm thick) egg at a time; internal fertilization | |
Living mode | Opportunistic, it can take advantage in disturbed or pollutant environments | |
Promising characteristics | It is successfully cultivated for assay experiments in laboratory, high hatching rate. Populations from distinct climate regions (tropical vs. temperate) exhibit similar life-cycle characteristics under standardized conditions | |
Possible application mode | Phylogeny, ecotoxicology, role in the ecosystem functioning control (differential influence on the decomposition process of macrophytes), mechanism of food selection | |
Stilbonematinae (mainly Laxus oneistus) and Astomonematinae | ||
Distribution | Low oxygen and hydrogen sulphide enrich sediments | [62,63,64,65] |
Typical habitat | Both the members of Stilbonematinae and Astomonematinae live between oxidized and reduced sediment layers from intertidal to deep sea habitats | |
Feeding | Both Stilbonematinae and Astomonematinae are associated with Gammaproteobacteria. The cuticle of the Stilbonematinae is almost entirely covered by bacteria that are both used to survive in sulphur conditions and grazed by host Astomonematines are mouthless and their esophagus is vestigial. They depend entirely on their bacterial symbionts for their nutrition, even if the exact mechanism of transfer is unknown | |
Cryptic species occurrence | NONE | |
Brood size and mating system | N/A; internal fertilization | |
Living mode | Tolerant to sulphidic conditions. They carry sulphur-oxidizing bacteria (SOB) within their body as endosymbionts or on their surface as ectosymbionts | |
Promising characteristics | Stilbonematids may be useful to understand symbiosis establishment, due to their accessibility, abundance and relative simplicity of this association. In Stilbonematinae, host and ectosymbiont coat can be easily separated from each other and both host-secreted and microbe-associated molecular patterns (MAMPs) identified through ‘omics’ can be expressed in vitro and directly tested | |
Possible application mode | Interaction between nematodes and bacteria, evolution of host-symbiont dependence, transmission mode of symbionts, symbiont’s role in the prevention of viral bacteria human infections | |
Enoplus brevis | ||
Distribution | Baltic, Mediterranean, North Sea, and North Atlantic Ocean | [66,67] |
Typical habitat | Sandy littoral; marine, brackish; sea intertidal zone | |
Feeding | Predator | |
Cryptic species occurrence | NONE | |
Brood size and mating system | 16–20 days at 20 °C; internal fertilization | |
Living mode | E. brevis can live in sediments with low oxygen partial pressure | |
Promising characteristics | E. brevis, along with E. communis, are the only free-living nematodes with hemoglobin | |
Possible application mode | Study of enoplidan development in comparison with C. elegans could elucidate the role of cell lineage in nematode development and evolution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semprucci, F.; Grassi, E.; Cocozza di Montanara, A.; Sandulli, R.; Baldrighi, E. Emerging Marine Nematodes as Model Organisms: Which Species for Which Question? Diversity 2025, 17, 59. https://doi.org/10.3390/d17010059
Semprucci F, Grassi E, Cocozza di Montanara A, Sandulli R, Baldrighi E. Emerging Marine Nematodes as Model Organisms: Which Species for Which Question? Diversity. 2025; 17(1):59. https://doi.org/10.3390/d17010059
Chicago/Turabian StyleSemprucci, Federica, Eleonora Grassi, Adele Cocozza di Montanara, Roberto Sandulli, and Elisa Baldrighi. 2025. "Emerging Marine Nematodes as Model Organisms: Which Species for Which Question?" Diversity 17, no. 1: 59. https://doi.org/10.3390/d17010059
APA StyleSemprucci, F., Grassi, E., Cocozza di Montanara, A., Sandulli, R., & Baldrighi, E. (2025). Emerging Marine Nematodes as Model Organisms: Which Species for Which Question? Diversity, 17(1), 59. https://doi.org/10.3390/d17010059