Prediction of Climate Change Impacts on the Distribution of an Umbrella Species in Western Sichuan Province, China: Insights from the MaxEnt Model and Circuit Theory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Species Occurrences
2.2. Data Source
2.2.1. Bioclimatic Variables
2.2.2. Additional Variables
2.3. Data Processing
2.4. Species Distribution Model
2.5. Altitudinal Distribution and Dispersal Analyses
3. Results
3.1. Model Performance
3.2. Climate-Induced Variations in Suitable Habitat Distributions
3.3. Changes in the Elevation Distribution of Suitable Habitats
3.4. Distribution Characteristics of Dispersal Paths
4. Discussion
- (1)
- Strengthening habitat protection in key areas such as Dege, Ganzi, and Xinlong
- (2)
- Protecting and restoring ecological corridors in southern regions like Yajiang, Kangding, and Litang
- (3)
- Enhancing habitat protection in high-elevation areas, particularly in Litang, Daocheng, and Baiyu
- (4)
- Implementing habitat restoration measures in low-elevation areas, especially in Yajiang and Xinlong
- (5)
- Strengthening regional cooperation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Timothy, D.; Robert, K.C.; Finn, D.; Birgitta, E.; et al. Biodiversity re-distribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Jaureguiberry, P.; Titeux, N.; Wiemers, M.; Bowler, D.E.; Coscieme, L.; Golden, A.S.; Guerra, C.A.; Jacob, U.; Takahashi, Y.; Settele, J.; et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022, 8, eabm9982. [Google Scholar] [CrossRef] [PubMed]
- Heino, J.; Virkkala, R.; Toivonen, H. Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biol. Rev. 2009, 84, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Tylianakis, J.M.; Didham, R.K.; Bascompte, J.; Wardle, D.A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 2008, 11, 1351–1363. [Google Scholar] [CrossRef]
- Opdam, P.; Wascher, D. Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 2004, 117, 285–297. [Google Scholar] [CrossRef]
- Pauls, S.U.; Nowak, C.; Bálint, M.; Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 2013, 22, 925–946. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Peng, G.; Wen, C.; Zahoor, B.; Ma, X.; Hacker, C.E.; Xue, Y. Climate and land use changes shift the distri-bution and dispersal of two umbrella species in the Hindu Kush Himalayan region. Sci. Total Environ. 2021, 777, 146207. [Google Scholar] [CrossRef]
- Straffelini, E.; Luo, J.; Tarolli, P. Climate change is threatening mountain grasslands and their cultural ecosystem services. Catena 2024, 237, 107802. [Google Scholar] [CrossRef]
- Onoh, U.C.; Ogunade, J.; Owoeye, E.; Awakessien, S.; Asomah, J.K. Impact of Climate Change on Biodiversity and Ecosystems Services. Int. J. Geogr. Environ. Manag. 2024, 10, 77–93. [Google Scholar]
- Wang, Z.; Wang, T.; Zhang, X.; Wang, J.; Yang, Y.; Sun, Y.; Guo, X.; Wu, Q.; Nepovimova, E.; Watson, A.E.; et al. Biodiversity conservation in the context of climate change: Facing challenges and management strategies. Sci. Total. Environ. 2024, 937, 173377. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Yang, Z.; Du, Y.; Cui, R.; Xi, Y.; Liu, X. Vulnerability of protected areas to future climate change, land use modification, and biological invasions in China. Ecol. Appl. 2024, 34, e2831. [Google Scholar] [CrossRef] [PubMed]
- Gillingham, P.K.; Britton, J.R.; Jones, G.; Miller-Rushing, A.; Stafford, R.; Slater, H. Climate change adaptation for biodiversity in protected areas: An overview of actions. Biol. Conserv. 2024, 289, 110375. [Google Scholar] [CrossRef]
- Corelli, V.; Boerder, K.; Hunter, K.L.; Lavoie, I.; Tittensor, D.P. The biodiversity adaptation gap: Management actions for marine protected areas in the face of climate change. Conserv. Lett. 2024, 17, e13003. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Wang, N.; Yang, W.; Zhai, Y.; Wang, H.; Fan, P.; You, C.; Zheng, P.; Wang, R. Changing effects of energy and water on the richness distribution pattern of the Quercus genus in China. Front. Plant Sci. 2024, 15, 1301395. [Google Scholar] [CrossRef]
- Yan, M.H.; Liu, B.W.; Tiamiyu, B.B.; Zhang, Y.; Ning, W.Y.; Si, J.Y.; Dong, N.C.; Lv, X.L. Modeling the Present and Future Geographical Distribution Potential of Dipteronia dyeriana, a Critically Endangered Species from China. Diversity 2024, 16, 545. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive eval-uation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Dickson, B.G.; Albano, C.M.; Anantharaman, R.; Beier, P.; Fargione, J.; Graves, T.A.; Gray, M.E.; Hall, K.R.; Lawler, J.J.; Leonard, P.B.; et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 2019, 33, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wang, Z.; Zheng, C.; Fang, J. Biodiversity in China’s mountains. Front. Ecol. Environ. 2006, 4, 347–352. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Zhai, X.; Xia, J. Runoff variation and its response to climate change in the Three Rivers Source Region. J. Geogr. Sci. 2012, 22, 781–794. [Google Scholar] [CrossRef]
- Gong, J.; Richard, H. The Status of Bears in China: Country Report. 2006. Available online: https://www.japanbear.org/uab/pdf/chapter13.pdf (accessed on 15 March 2023).
- Dai, Y.; Hacker, C.E.; Zhang, Y.; Li, W.; Li, J.; Zhang, Y.; Bona, G.; Liu, H.; Li, Y.; Xue, Y.; et al. Identifying the risk regions of house break-ins caused by Tibetan brown bears (Ursus arctos pruinosus) in the Sanjiangyuan region, China. Ecol. Evol. 2019, 9, 13979–13990. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wang, T.; Groen, T.A.; Skidmore, A.K.; Yang, X.; Ma, K.; Wu, Z. Climate and land use changes will degrade the distribution of Rhododendrons in China. Sci. Total Environ. 2019, 659, 515–528. [Google Scholar] [CrossRef]
- Weyant, J.P. A perspective on integrated assessment. Clim. Chang. 2009, 95, 317–323. [Google Scholar] [CrossRef]
- Li, X.; Yu, L.; Sohl, T.; Clinton, N.; Li, W.; Zhu, Z.; Liu, X.; Gong, P. A cellular automata downscaling based 1 km global land use datasets (2010–2100). Sci. Bull. 2016, 61, 1651–1661. [Google Scholar] [CrossRef]
- Stanton, J.C.; Pearson, R.G.; Horning, N.; Ersts, P.; Akçakaya, H.R. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evol. 2012, 3, 349–357. [Google Scholar] [CrossRef]
- Khatchikian, C.; Sangermano, F.; Kendell, D.; Livdahl, T. Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction. Med. Veter-Èntomol. 2010, 25, 268–275. [Google Scholar] [CrossRef]
- Nagy, J.A.S.; Haroldson, M.A. Comparisons of some home range and population parameters among four grizzly bear populations in Canada. Bears Their Biol. Manag. 1990, 8, 227. [Google Scholar] [CrossRef]
- McRae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef]
- Keeley, A.T.H.; Beier, P.; Gagnon, J.W. Estimating landscape resistance from habitat suitability: Effects of data source and nonlinearities. Landsc. Ecol. 2016, 31, 2151–2162. [Google Scholar] [CrossRef]
- Hill, J.K.; Griffiths, H.M.; Thomas, C.D. Climate change and evolutionary adaptations at species’ range margins. Annu. Rev. Èntomol. 2011, 56, 143–159. [Google Scholar] [CrossRef]
- Dai, Y.; Xia, W.; Zhu, Y.; Hacker, C.; Wang, X.; Li, D. Historical changes in the distribution of the Sichuan golden snub-nosed monkey (Rhinopithecus roxellana) in Sichuan Province, China. Ecol. Evol. 2024, 14, e11270. [Google Scholar] [CrossRef] [PubMed]
- Brice, E.M.; Larsen, E.J.; Stahler, D.R.; MacNulty, D.R. The primacy of density-mediated indirect effects in a community of wolves, elk, and aspen. Ecol. Monogr. 2024, 95, e1627. [Google Scholar] [CrossRef]
- Xu, J.; Ling, Y.; Sun, Y.; Jiang, Y.; Shen, R.; Wang, Y. How do different processes of habitat fragmentation affect habitat quality?—Evidence from China. Ecol. Indic. 2024, 160, 111880. [Google Scholar] [CrossRef]
- Xu, W.; Xu, L.; Cao, Y.; Zheng, J.; Wang, Y.; Cheng, K.; Lee, C.-H.; Dai, H.; Mei, S.; Zong, C. Community perspectives of flagship species: Can conservation motivators mitigate human-wildlife conflict? Front. Ecol. Evol. 2024, 12, 1265694. [Google Scholar] [CrossRef]
No. | Variables | Abbreviation | Description | Resolution |
---|---|---|---|---|
1 | Bioclimatic variables | Bio1 | Mean Annual Temperature | 1 km |
2 | Bio2 | Mean Diurnal Range | ||
3 | Bio3 | Temperature Constancy | ||
4 | Bio4 | Temperature Seasonality | ||
5 | Bio5 | Max Temperature of Warmest Month | ||
6 | Bio6 | Min Temperature of Coldest Month | ||
7 | Bio7 | Temperature Annual Range | ||
8 | Bio8 | Mean Temperature of Wettest Quarter | ||
9 | Bio9 | Mean Temperature of Driest Quarter | ||
10 | Bio10 | Mean Temperature of Warmest Quarter | ||
11 | Bio11 | Mean Temperature of Coldest Quarter | ||
12 | Bio12 | Annual Precipitation | ||
13 | Bio13 | Precipitation of Wettest Month | ||
14 | Bio14 | Precipitation of Driest Month | ||
15 | Bio15 | Precipitation Seasonality | ||
16 | Bio16 | Precipitation of Wettest Quarter | ||
17 | Bio17 | Precipitation of Driest Quarter | ||
18 | Bio18 | Precipitation of Warmest Quarter | ||
19 | Bio19 | Precipitation of Coldest Quarter | ||
20 | Environmental variables | LUCC | Current (2010) and Future (2070s) Land Use and Land Cover | 30 m |
21 | ELE | Elevation | 30 m | |
22 | HII | Human Influence Index | 1 km |
Variable | Percent Contribution (%) | Permutation Importance (%) |
---|---|---|
bio12 | 22.1 | 24.3 |
bio3 | 21.5 | 32.8 |
ele | 19.3 | 12 |
lucc | 17.2 | 11.8 |
bio15 | 8.7 | 8.9 |
bio17 | 8.3 | 5.4 |
bio2 | 1.6 | 3.8 |
hii | 1.2 | 1 |
County | Current | RCP 2.6 | RCP 4.5 | RCP 8.5 | ||||
---|---|---|---|---|---|---|---|---|
Area/km2 | Proportion/% | Area/km2 | Proportion/% | Area/km2 | Proportion/% | Area/km2 | Proportion/% | |
Batang | 5027.66 | 7.08 | 3698.34 | 5.85 | 4931.10 | 7.93 | 3908.79 | 7.20 |
Bayu | 5622.69 | 7.92 | 4471.74 | 7.08 | 4099.64 | 6.60 | 3035.34 | 5.59 |
Danba | 233.50 | 0.33 | 228.92 | 0.36 | 190.30 | 0.31 | 169.70 | 0.31 |
Daocheng | 4707.58 | 6.63 | 3873.22 | 6.13 | 2826.79 | 4.55 | 2780.28 | 5.12 |
Daofu | 597.26 | 0.84 | 433.21 | 0.69 | 443.28 | 0.71 | 303.33 | 0.56 |
Dege | 4829.94 | 6.81 | 4667.60 | 7.39 | 4862.12 | 7.82 | 4629.74 | 8.53 |
Derong | 725.35 | 1.02 | 606.86 | 0.96 | 766.43 | 1.23 | 378.35 | 0.70 |
Ganzi | 2741.77 | 3.86 | 2874.43 | 4.55 | 3216.21 | 5.18 | 2992.32 | 5.51 |
Jiulong | 982.66 | 1.38 | 706.58 | 1.12 | 777.82 | 1.25 | 326.65 | 0.60 |
Kangding | 1418.00 | 2.00 | 1436.57 | 2.27 | 965.27 | 1.55 | 1165.67 | 2.15 |
Litang | 11,253.51 | 15.86 | 10,022.14 | 15.86 | 9422.72 | 15.16 | 7740.76 | 14.26 |
Luding | 391.78 | 0.55 | 516.00 | 0.82 | 241.56 | 0.39 | 357.14 | 0.66 |
Luhuo | 1041.55 | 1.47 | 914.97 | 1.45 | 958.36 | 1.54 | 476.78 | 0.88 |
Seda | 3962.37 | 5.58 | 4040.19 | 6.39 | 4254.41 | 6.85 | 3800.01 | 7.00 |
Shiqu | 17,307.07 | 24.39 | 16,455.19 | 26.04 | 16,609.27 | 26.73 | 16,268.06 | 29.96 |
Xiangcheng | 3518.58 | 4.96 | 3343.86 | 5.29 | 2955.14 | 4.76 | 3109.93 | 5.73 |
Xinlong | 4493.18 | 6.33 | 3547.38 | 5.61 | 3210.26 | 5.17 | 2098.40 | 3.87 |
Yajiang | 2115.33 | 2.98 | 1343.32 | 2.13 | 1415.62 | 2.28 | 749.68 | 1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Sun, Q. Prediction of Climate Change Impacts on the Distribution of an Umbrella Species in Western Sichuan Province, China: Insights from the MaxEnt Model and Circuit Theory. Diversity 2025, 17, 67. https://doi.org/10.3390/d17010067
Deng X, Sun Q. Prediction of Climate Change Impacts on the Distribution of an Umbrella Species in Western Sichuan Province, China: Insights from the MaxEnt Model and Circuit Theory. Diversity. 2025; 17(1):67. https://doi.org/10.3390/d17010067
Chicago/Turabian StyleDeng, Xiaoyun, and Qiaoyun Sun. 2025. "Prediction of Climate Change Impacts on the Distribution of an Umbrella Species in Western Sichuan Province, China: Insights from the MaxEnt Model and Circuit Theory" Diversity 17, no. 1: 67. https://doi.org/10.3390/d17010067
APA StyleDeng, X., & Sun, Q. (2025). Prediction of Climate Change Impacts on the Distribution of an Umbrella Species in Western Sichuan Province, China: Insights from the MaxEnt Model and Circuit Theory. Diversity, 17(1), 67. https://doi.org/10.3390/d17010067