Natural Hybridization Between Quercus crassipes and Q. crassifolia (Fagaceae) Is a Key Process to Ensure the Biodiversity of Their Associated Lichen Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oak Species
2.2. Study Sites
2.3. Molecular Data
2.4. Lichen Community
2.5. Statistical Analysis
3. Results
3.1. Composition of Lichens Associated with Quercus crassifolia × Q. crassipes Complex in Two Hybrid Zones
3.2. Lichen Similarity Among Host Oak Taxa in Two Hybrid Zones
3.3. Species Richness and Cover of Lichens in Host Oak Taxa and Hybrid Zones
3.4. Lichenic Diversity in Hybrid Zones and Host Oak Taxa
3.5. Host Oak Taxa Genetic Diversity
3.6. Influence of Genetic Diversity and Oak Host Taxa on the Structure of the Lichen Community in Two Hybrid Zones
4. Discussion
4.1. Composition of Lichens Among Host Oak Taxa
4.2. Similarity Among Host Oak Taxa
4.3. Species Richness, Diversity, and Cover of Lichens Between Host Oak Taxa
4.4. Influence of Host Oak Taxa Genetic Diversity in Two Hybrid Zones on the Structure of the Lichen Community
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wimp, G.M.; Martinsen, G.D.; Floate, K.D.; Bangert, R.K.; Whitham, T.G. Plant genetic determinants of arthropod community structure and diversity. Evolution 2005, 59, 6–169. [Google Scholar] [CrossRef]
- Bukovinszky, T.; van Veen, F.J.; Jongema, Y.; Dicke, M. Direct and indirect effects of resource quality on food web structure. Science 2008, 319, 804–807. [Google Scholar] [CrossRef]
- Valencia-Cuevas, L.; Mussali-Galante, P.; Cano-Santana, Z.; Pujade-Villar, J.; Equihua-Martínez, A.; Tovar-Sánchez, E. Genetic variation in foundation species governs the dynamics of trophic interactions. Current Zool. 2018, 64, 13–22. [Google Scholar] [CrossRef]
- Keith, A.R.; Bailey, J.K.; Whitham, T.G. Assisted migration experiments along a distance/elevation gradient show limits to supporting home site communities. PLOS Clim. 2023, 2, e0000137. [Google Scholar] [CrossRef]
- Ellison, A.M.; Bank, M.S.; Clinton, B.D.; Colburn, E.A.; Elliott, K.; Ford, C.R.; Foster, D.R.; Kloeppel, B.D.; Knoepp, J.D.; Lovett, G.M.; et al. Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 2005, 3, 479–486. [Google Scholar] [CrossRef]
- Ellison, A.M.; Barker-Plotkin, A.A.; Foster, D.R.; Orwig, D.A. Experimentally testing the role of foundation species in forests: The Harvard Forest Hemlock Removal Experiment. Methods Ecol. Evol. 2010, 1, 168–179. [Google Scholar] [CrossRef]
- Whitham, T.G.; Gehring, C.A.; Lamit, L.J.; Wojtowicz, T.; Evans, L.M.; Keith, A.R.; Smith, D.S. Community specificity: Life and afterlife effects of genes. Trends Plant Sci. 2012, 17, 271–281. [Google Scholar] [CrossRef]
- Valencia-Cuevas, L.; Piñero, D.; Mussali-Galante, P.; Valencia, S.; Tovar-Sánchez, E. Effect of a red oak species gradient on genetic structure and diversity of Quercus castanea (Fagaceae) in Mexico. Tree Genet. Genomes 2014, 10, 641–652. [Google Scholar] [CrossRef]
- Kagiya, S.; Yasugi, M.; Kudoh, H.; Nagano, A.J.; Utsumi, S. Does genomic variation in a foundation species predict arthropod community structure in a riparian forest? Mol. Ecol. 2018, 27, 1284–1295. [Google Scholar] [CrossRef]
- Næsborg, R.; Lau, M.K.; Michalet, R.; Williams, C.B.; Whitham, T.G. Tree genotypes affect rock lichens and understory plants: Examples of trophic-independent interactions. Ecology 2022, 103, e03589. [Google Scholar] [CrossRef]
- Crutsinger, G.M. A community genetics perspective: Opportunities for the coming decade. New Phytol. 2016, 210, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Wimp, G.M.; Young, W.P.; Woolbright, S.A.; Martinsen, G.D.; Keim, P.; Whitham, T.G. Conserving plant genetic diversity for dependent animal communities. Ecol. Lett. 2004, 7, 776–780. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Valencia-Cuevas, L.; Castillo-Mendoza, E.; Mussali-Galante, P.; Pérez-Ruíz, R.V.; Mendoza, A. Association between individual genetic diversity of two oak host species and canopy arthropod community structure. Eur. J. For. Res. 2013, 132, 165–179. [Google Scholar] [CrossRef]
- Bangert, R.K.; Whitham, T.G. Genetic assembly rules and community phenotypes. Evol. Ecol. 2007, 21, 549–560. [Google Scholar] [CrossRef]
- Keith, A.R.; Bailey, J.K.; Whitham, T.G. A genetic basis to community repeatability and stability. Ecology 2010, 91, 3398–3406. [Google Scholar] [CrossRef]
- Bangert, R.K.; Lonsdorf, E.V.; Wimp, G.M.; Shuster, S.M.; Fischer, D.; Schweizer, J.A.; Allan, G.J.; Bailey, J.K.; Whitham, T.G. Genetic structure of a foundation species: Scaling community phenotypes from the individual to the region. Heredity 2008, 100, 121–131. [Google Scholar] [CrossRef]
- Bailey, J.P.; Wooley, S.C.; Lindroth, R.; Whitham, T.G. Importance of species interactions to community heritability: A genetic basis to trophic level interactions. Ecol. Lett. 2006, 9, 78–85. [Google Scholar] [CrossRef]
- Madritch, M.D.; Hunter, M.D. Phenotypic diversity influences ecosystem functioning in an oak sandhills community. Ecology 2002, 83, 2084–2090. [Google Scholar] [CrossRef]
- Valencia-Cuevas, L.; Castillo-Mendoza, E.; Serrano-Muñoz, M.; Tovar-Sánchez, E. Mexican oaks as foundation species: The case of Quercus crassipes and Q. castanea. In Quercus: Classification, Ecology and Uses; Steffensen, B.J., Ed.; Nova Science Publisher: New York, NY, USA, 2020; pp. 211–241. [Google Scholar]
- Lorenzo, Z.; Burgarella, C.; López de Heredia, U.; Lumaret, R.; Petit, R.J.; Soto, A.; Gil, L. Relevance of genetics for conservation policies: The case of Minorcan cork oaks. Ann. Bot. 2009, 104, 1069–1076. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Mussali-Galante, P.; Esteban-Jiménez, R.; Piñero, D.; Arias, D.M.; Dorado, O.; Oyama, K. Chloroplast DNA polymorphism reveals geographic structure and introgression in Quercus crassifolia × Quercus crassipes hybrid complex in Mexico. Botany 2008, 86, 228–239. [Google Scholar] [CrossRef]
- Sullivan, A.R.; Owusu, S.A.; Weber, J.A.; Hipp, A.L.; Gailing, O. Hybridization and divergence in multi-species oak (Quercus) communities. Bot. J. Linn. Soc. 2016, 181, 99–114. [Google Scholar] [CrossRef]
- Li, X.; Wei, G.; El-Kassaby, Y.A.; Fang, Y. Hybridization and introgression in sympatric and allopatric populations of four oak species. BMC Plant Biol. 2021, 21, 266. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Mendoza, E. Effect of Hybridization of the Q. glabrescens × Q. rugosa and Q. glabrescens × Q. obtusata Complex on the Community of Gall-Forming Insects and Their Parasitoids. Ph.D. Thesis, National Autonomous University of Mexico, Mexico City, Mexico, 2019. [Google Scholar]
- Whitham, T.G.; Young, W.P.; Martinsen, G.D.; Gehring, C.A.; Schweitzer, J.A.; Shuster, S.M.; Wimp, G.M.; Fischer, D.G.; Bailey, J.P.; Lindroth, R.L. Community and ecosystem genetics: A consequence of the extended phenotype. Ecology 2003, 84, 559–573. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Oyama, K. Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: Morphological and molecular evidence. Amercian J. Bot. 2004, 91, 1352–1363. [Google Scholar] [CrossRef]
- Lumaret, R. Interspecies gene flow is a key evolutionary process for the adaptation of long-lived species to new environmental conditions. Cuad. De Biodivers. 2017, 53, 33–51. [Google Scholar] [CrossRef]
- Dungey, H.S.; Potts, B.M.; Whitham, T.G.; Li, H.-F. Plant genetics affects arthropod community richness and composition: Evidence from a synthetic eucalypt hybrid population. Evolution 2000, 54, 1938–1946. [Google Scholar]
- Tovar-Sánchez, E.; Oyama, K. Effect of hybridization of the Quercus crassifolia × Quercus crassipes complex on the community structure on endophagous insects. Oecologia 2006, 147, 702–713. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Oyama, K. Community structure of canopy arthropods associated in Quercus crassifolia × Quercus crassipes complex. Oikos 2006, 112, 370–381. [Google Scholar] [CrossRef]
- Purvis, O. Lichens and industrial pollution. In Ecology of Industrial Pollution; Batty, L., Hallberg, K., Eds.; Cambridge University Press: New York, NY, USA, 2010; pp. 41–69. [Google Scholar]
- Purvis, O.W.; Pawlik-Skowronska, B. Lichens and metals. In Stress in Yeasts and Filamentous Fungi; Avery, S.V., Stratford, M., Van West, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 175–200. [Google Scholar]
- Davies, C.; Ellis, C.J.; Lason, G.R.; Ennos, R.A. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes. Biol. Lett. 2014, 10, 201140190. [Google Scholar] [CrossRef]
- Lamit, L.J.; Bowker, M.A.; Holeski, L.M.; ReeseNæsborga, R.; Wooley, S.C.; Zinkgrafabe, M.; Lindroth, R.L.; Whitham, T.G.; Gehring, A.C. Genetically-based trait variation within a foundation tree species influences a dominant bark lichen. Fungal Ecol. 2011, 4, 103–106. [Google Scholar] [CrossRef]
- Lamit, L.J.; Busby, P.E.; Lau, M.K.; Compson, Z.G.; Wojtowicz, T.; Keith, A.R.; Zinkgraf, M.S.; Schweitzer, J.A.; Shuster, S.M.; Gehring, C.A.; et al. Tree genotype mediates covariance among communities from microbes to lichens and arthropods. J. Ecol. 2015, 103, 840–850. [Google Scholar] [CrossRef]
- Lamit, L.J.; Lau, M.K.; Naesborg, R.R.; Wojtowicz, T.; Whitham, T.G.; Gehring, C.A. Genotype variation in bark texture drives lichen community assembly across multiple environments. Ecology 2015, 96, 960–971. [Google Scholar] [CrossRef] [PubMed]
- Ranius, T.; Johansson, P.; Berg, N.; Nacklasson, M. The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. J. Veg. Sci. 2008, 19, 653–662. [Google Scholar] [CrossRef]
- Belinchón, R.; Martínez, I.; Otálora, M.A.G.; Aragón, G.; Escudero, J.D.A. Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape. Am. J. Bot. 2009, 96, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, P.R.; Michler, C.H.; Sun, W.; Romero-Severson, J. Microsatellite markers for northern red oaks (Fagaceae: Quercus rubra). Mol. Ecol. 2022, 2, 472–474. [Google Scholar] [CrossRef]
- Steinkellner, H.; Fluch, S.; Turetscheki, E.; Lexer, C.; Streiff, R.; Kremer, A.; Burg, K.; Glössl, J. Identification and characterization of (GA/ CT)n microsatellite loci from Quercus petraea. Plant Mol. Biol. 1997, 33, 1093–1096. [Google Scholar] [CrossRef]
- Kampfer, S.; Lexer, K.; Glössl, J.; Steinkellner, H. Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 1998, 129, 183–186. [Google Scholar] [CrossRef]
- Pardow, A. Response of Epiphytic Crustose Lichens to Edge Effects in a Tropical Forest Fragment. Ph.D. Thesis, University of Kaiserslautern, Kaiserslautern, Germany, 2007. [Google Scholar]
- Pérez-Pérez, R.E.; Quiroz-Castelán, H.; Herrera-Campos, M.A. Scale-dependent effects of management on the richness and composition of corticolous macrolichens in pine-oak forests of Sierra de Juárez, Oaxaca, Mexico. Bibl. Lichenol. 2011, 106, 243–258. [Google Scholar]
- Hale, E.H. A Monograph of Parmelia subgenus Amphigymnia; Smithsonian Institution Press: Washington, DC, USA, 1965; Volume 36, p. 5. [Google Scholar]
- Hale, M.E., Jr. A revision of the lichen genus Hypotrachyna (Parmeliaceae) in tropical America. Smithson. Contrib. Bot. 1975, 25, 1–73. [Google Scholar] [CrossRef]
- Hale, M.E., Jr. Synopsis of a new lichen genus Everniastrum hale. Mycotaxon 1976, 3, 345–353. [Google Scholar]
- Hale, M.E., Jr. How to Know the Lichens, 2nd ed.; Brown Company Press: Cincinnati, OH, USA; Smithsonian Institution: Washington, DC, USA, 1979. [Google Scholar]
- Nash, T.H., III; Ryan, B.D.; Gries, C.; Gries, C.; Bungartz, F. (Eds.) Lichen Flora of the Greater Sonoran Desert Region; Lichens Unlimited: Tempe, AZ, USA, 2002; Volume 1. [Google Scholar]
- Nash, T.H., III; Ryan, B.D.; Gries, C.; Gries, C.; Bungartz, F. (Eds.) Lichen Flora of the Greater Sonoran Desert Region; Lichens Unlimited: Tempe, AZ, USA, 2004; Volume 2. [Google Scholar]
- Nash, T.H., III; Gries, C.; Bungartz, F. (Eds.) Lichen flora of the Greater Sonoran Desert Region; Lichens Unlimited: Tempe, AZ, USA, 2007; Volume 3. [Google Scholar]
- Culberson, C.F.; Kristinsson, H. A standardized method for the identification of lichen products. Chromatography 1970, 46, 85–93. [Google Scholar] [CrossRef]
- Faith, D.P.; Minchin, P.R.; Belbin, L. Compositional dissimilarity as a robust measure of ecological distance. Vegetation 1987, 69, 57–68. [Google Scholar] [CrossRef]
- Warwick, R.M.; Clarke, K.R.; Suharsono, A. A statistical analysis of coral community responses to the 1982–1983 El Niño in the Thousand Island, Indonesia. Coral Reefs 1990, 8, 171–179. [Google Scholar] [CrossRef]
- Solow, R.A. A simple test for change in community structure. J. Animal Ecol. 1993, 62, 191–193. [Google Scholar] [CrossRef]
- Aparicio, J.M.; Ortego, J.; Cordero, P.J. What should we weigh to estimate heterozygosity, alleles or loci? Mol. Ecol. 2006, 15, 4659–4665. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Statsoft, Inc. STATISTICA for Windows; STATISTICA for Windows; StatSoft, Inc.: Tulsa, OK, USA, 2007. [Google Scholar]
- Henderson, P.A.; Seaby, M.P.H. Species Diversity and Richness Software, version 3.03; Pisces Conservation Ltd.: Lymington, UK, 2002. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electronica 2001, 4, 9. [Google Scholar]
- Hochwender, C.G.; Fritz, R.S. Plant genetic differences influence herbivore community structure: Evidence from a hybrid willow system. Oecologia 2004, 138, 547–557. [Google Scholar] [CrossRef]
- Floate, K.D.; Godbout, J.; Lau, M.K.; Isabel, N.; Whitham, T.G. Plant–herbivore interactions in a trispecific hybrid swarm of Populus: Assessing support for hypotheses of hybrid bridges, evolutionary novelty and genetic similarity. New Phytol. 2016, 209, 832–844. [Google Scholar] [CrossRef]
- Bangert, R.K.; Allan, G.J.; Turek, R.J.; Wimp, G.M.; Meneses, N.; Martinsen, G.N.; Keim, P.; Whitham, T. From genes to geography: A genetic similarity rule for arthropod community structure at multiple geographic scales. Mol. Ecol. 2006, 15, 4215–4228. [Google Scholar] [CrossRef]
- López-Caamal, A.; Ruiz-Amaro, L.C.; Zepeda-Rodríguez, A.; Mussali-Galante, P.; Tovar-Sánchez, E. Micromorphological character expression of the hybrid Quercus × dysophyla and its parental species (Q. crassifolia and Q. crassipes). Bot. Sci. 2017, 95, 375–389. [Google Scholar] [CrossRef]
- Fritz, R.S.; Roche, B.M.; Brunsfeld, S.J.; Orians, C.M. Interspecific and temporal variation in herbivores responses to hybrid willows. Oecologia 1996, 108, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Fritz, R.S. Resistance of hybrid plants to herbivores: Genes, environment, or both? Ecology 1999, 80, 382–391. [Google Scholar] [CrossRef]
- Albarrán-Lara, A.L.; Mendoza-Cuenca, L.; Valencia-Avalos, S.; González-Rodríguez, A.; Oyama, K. Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Quercus resinosa (Fagaceae) through an altitudinal gradient in Mexico. Int. J. Plant Sci. 2010, 171, 310–322. [Google Scholar] [CrossRef]
- Fortini, P.; Antonecchia, G.; Di Marzio, P.; Maiuro, L.; Viscosi, V. Role of micromorphological leaf traits and molecular data in taxonomy of three sympatric white oak species and their hybrids (Quercus L.). Plant Biosyst. 2015, 149, 546–558. [Google Scholar] [CrossRef]
- Barbour, R.C.; Forester, L.G.; Baker, S.C.; Steane, D.A.; Potts, B.M. Biodiversity consequences of genetic variation in bark characteristics within a foundation tree species. Conserv. Biol. 2009, 23, 1146–1155. [Google Scholar] [CrossRef]
- Orians, C.M. The effects of hybridization in plants on secondary chemistry: Implications for the ecology and evolution of plant-herbivore interactions. Am. J. Bot. 2000, 87, 1749–1756. [Google Scholar] [CrossRef]
- Cheng, D.; Vrieling, K.; Klinkhammer, P.G.L. The effect of hybridization on secondary metabolites and herbivore resistance: Implications for the evolution of chemical diversity in plants. Phytochem. Rev. 2011, 10, 107–117. [Google Scholar] [CrossRef]
- Zytynska, S.E.; Fay, M.F.; Penny, D.; Preziosi, R.F. Genetic variation in a tropical tree species influences the associated epiphytic plant and invertebrate communities in a complex forest ecosystem. Philos. Trans. R. Soc. B 2011, 366, 1329–1336. [Google Scholar] [CrossRef]
- Hughes, A.R.; Stachowicz, J.J.; Williams, S.L. Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia 2009, 159, 725–733. [Google Scholar] [CrossRef]
- Clark, J.S. Individuals and the variation needed for high species diversity in forest trees. Science 2010, 327, 1129–1132. [Google Scholar] [CrossRef]
- Schweitzer, J.A.; Fischer, D.G.; Rehill, B.J.; Wooley, S.C.; Woolbright, S.A.; Lindroth, R.L.; Whitham, T.G.; Zak, D.R.; Hart, S.C. Forest gene diversity is correlated with the composition and function of soil microbial communities. Popul. Ecol. 2011, 53, 35–46. [Google Scholar] [CrossRef]
- Hunter, M.D.; Varley, G.C.; Gradwell, G.R. Estimating the relative roles of top-down and bottom-up forces on insect herbivore populations: A classic study revisited. Proc. Natl. Acad. Sci. USA 1997, 94, 9176–9181. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Mendoza, E.; Salinas-Sánchez, D.; Valencia-Cuevas, L.; Zamilpa, A.; Tovar-Sánchez, E. Natural hybridisation among Quercus glabrescens, Q. rugosa and Q. obtusata (Fagaceae): Microsatellites and secondary metabolites markers. Plant Biol. 2019, 21, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Whitham, T.G.; Bailey, J.K.; Scheweitzer, J.A.; Shuster, S.M.; Bangert, R.K.; LeRoy, C.J.; Lonsdorf, E.V.; Allan, G.J.; DiFazio, S.P.; Potts, B.M.; et al. A framework for community and ecosystem genetics: Form genes to ecosystems. Nature 2006, 7, 510–523. [Google Scholar] [CrossRef]
- Brown, B.J.; Ewel, J.J. Herbivory in complex and simple tropical successional ecosystems. Ecology 1987, 68, 108–116. [Google Scholar] [CrossRef]
Family | Species | Host Oak Taxa | Hybrid Zone | |||
---|---|---|---|---|---|---|
Q. crasf | Q. × dys | Q. crasp | Canalejas | Tlaxco | ||
Acarosporaceae | Strangospora moriformis (Ach.) Stein | X | X | √ | ||
Arthoniaceae | Herpothallon sp. | X | X | √ | √ | |
Sporostigma sp. | X | X | √ | |||
Candelariaceae | Candelaria concolor (Dicks.) Arnold. | X | X | √ | ||
Candelariella vitelina (Hoffm.) Müll. Arg. | X | √ | ||||
Cladoniaceae | Cladonia coniocraea (Flörke) Spreng | X | √ | |||
Cladonia ochrochlora Flörke | X | √ | ||||
Collemataceae | Leptogium azureum (Sw. ex Ach.) Mont. | X | √ | |||
Leptogium burnetiae C.W. Dodge | X | X | X | √ | ||
Leptogium chloromelum (Sw. ex Ach.) Nyl. | X | √ | ||||
Leptogium corticola (Taylor) Tuck | X | X | √ | |||
Leptogium digitatum (A. Massal.) Zahlbr. | X | X | X | √ | ||
Leptogium laceroides B. de Lesd | X | √ | ||||
Leptogium phyllocarpum (Pers.) Mont. | X | √ | ||||
Graphidaceae | Graphis scripta (L.) Ach. | X | √ | |||
Lecanoraceae | Japewia sp. | X | √ | |||
Lecanora albella (Pers.) Ach. | X | X | √ | |||
Lecanora albellula Nyl. | X | X | X | √ | ||
Lecanora allophana Nyl. | X | √ | ||||
Lecanora caesiorubella Ach. | X | √ | ||||
Lecanora densa (Sliwa & Wetmore) Printzen | X | √ | ||||
Lecanora horiza (Ach.) Lindasy | X | √ | ||||
Lecanora hybocarpa (Tuck.) Brodo | X | √ | ||||
Lecanora laxa (Sliwa & Wetm.) Printzen | X | X | √ | |||
Lecanora neaosonorensis Lumbsch & T. Nash | X | √ | ||||
Lecanora symmicta (Ach.) Ach. | X | √ | ||||
Lecanora tropica Zahlbr. | X | √ | ||||
Lecanora zosterae (Ach.) Nyl. | X | √ | ||||
Lobariaceae | Sticta beavoisii Delise | X | X | X | √ | |
Sticta kunthii Hook. F | X | √ | ||||
Sticta fuliginosa (Hoffm.) Ach. | X | X | √ | |||
Parmeliaceae | Cetrelia sp. | X | √ | |||
Everniastrum sorocheilum (Vain.) Hale | X | √ | ||||
Everniastrum sp. | X | X | √ | |||
Flavoparmelia caperata (L.) Hale | X | X | X | √ | √ | |
Flavopunctelia flaventior (Nyl.) Hale | X | X | X | √ | √ | |
Flavopunctelia praesignis (Nyl.) Hale | X | X | X | √ | √ | |
Hypotrachyna pulvinata (Fee) Hale | X | X | √ | |||
Hypotrachyna revuluta (Flörke) Hale | X | √ | ||||
Hypotrachyna rockii (Zahlbr.) Hale | X | √ | ||||
Hypotrachyna sp. | X | X | √ | |||
Phaeophysica sp. | X | X | X | √ | ||
Parmotrema alidactilatum Estrabou & Adler | X | X | √ | |||
Parmotema apoteciada (Taylor) Hale | X | √ | ||||
Parmotrema arnoldii (Du Rietz) Hale | X | X | √ | |||
Parmotrema crinitum (Ach.) M. Choisy | X | X | √ | |||
Parmotrema eurysacum (Hue) Hale | X | X | X | √ | √ | |
Parmotrema hypoleucium (Steiner) Hale | X | X | X | √ | √ | |
Parmotrema reticulatum (Taylor) M. Choisy | X | X | X | √ | ||
Parmotrema stuppeum (Taylor) Hale | X | √ | ||||
Punctelia hypoleucites (Nyl.) Krog, | X | X | √ | |||
Punctelia perreticulata (Räsänen) G. Wilh. | X | X | X | √ | ||
Usnea ceratina (Ach.) | X | X | √ | |||
Usnea ceratinatum (Ach.) | X | X | √ | |||
Usnea filipendula Stirton | X | X | √ | |||
Usnea florida (L.) Weber ex F.H.Wigg. | X | √ | ||||
Usnea glabrata (Ach.) Vainio | X | X | X | √ | ||
Physciaceae | Diriniaria sp. | X | √ | |||
Heterodermia granulifera (Ach.) Culb. | X | X | √ | √ | ||
Heterodermia hypoleuca (Mühl.) Trevis | X | √ | ||||
Heterodermia japonica (M. Satô) Swinscow | X | X | √ | |||
Heterodermia leucomela (L.) Poelt | X | X | X | √ | ||
Heterodermia obscurata (Nyl) Trevis | X | X | √ | |||
Heterodermia pseudospeciosa (Kurok.) Culb | X | X | √ | √ | ||
Heterodermia tremulans (Müll. Arg.) W. Culb. | X | √ | ||||
Physcia erumpens Moberg | X | √ | ||||
Pertusariaceae | Pertusaria californica Dibben | X | √ | |||
Ramalinaceae | Ramalina asahinae W.L. Culb. | X | X | X | √ | |
Ramalina celastri (Sprengel) Krog & Swinsco | X | X | X | √ | ||
Ramalina complanata (Sw.) Ach. | X | X | √ | |||
Ramalina sp. | X | √ | ||||
Stereocaulaceae | Lepraria incana (L.) Ach | X | √ | |||
Lepraria lobificans (B. de Lesd.) R.C. Harris | X | √ | ||||
Lepraria sp. | X | √ | ||||
Teloschistaceae | Teloschistes chrysophthalmus (L.) Th. Fr. | X | √ | |||
Teloschistes flavicans (Sw.) Norman | X | X | √ |
Cover | Contribution | Cumulative Contribution | ||
---|---|---|---|---|
Lichen Species | Q. crassifolia | Q. × dysophylla | ||
Punctelia perreticulata | 2.97 | 80.3 | 30.52 | 30.52 |
Flavoparmelia caperata | 37.1 | 86.1 | 21.31 | 51.83 |
Punctelia hypoleucites | 0 | 16.4 | 6.96 | 58.79 |
Parmotrema eurysacum | 29.7 | 34.7 | 5.91 | 64.70 |
Herpothallon sp. | 12 | 0 | 4.76 | 69.46 |
Lecanora laxa | 0 | 9.7 | 3.78 | 73.24 |
Lepraria incana | 8.8 | 0 | 3.54 | 76.78 |
Parmotrema hypoleucium | 0 | 8.2 | 3.19 | 79.97 |
Dirinaria sp. | 7.6 | 0 | 2.94 | 82.92 |
Everniastrum sp. | 7.3 | 0 | 2.91 | 85.82 |
Flavopunctelia praesignis | 10.8 | 12.9 | 2.88 | 88.71 |
Lecanora albella | 7.11 | 0.5 | 2.74 | 91.45 |
Q. × dysophylla | Q. crassipes | |||
Flavopunctelia praesignis | 12.9 | 120.0 | 31.45 | 31.45 |
Punctelia perreticulata | 80.3 | 12.0 | 21.07 | 52.52 |
Flavoparmelia caperata | 86.1 | 36.0 | 16.91 | 69.43 |
Parmotrema eurysacum | 34.7 | 11.0 | 7.46 | 76.89 |
Punctelia hypoleucites | 16.4 | 8.8 | 3.80 | 80.69 |
Parmotrema hypoleucium | 8.2 | 16.0 | 3.55 | 84.24 |
Heterodermia hypoleuca | 0 | 10.2 | 3.05 | 87.29 |
Lecanora laxa | 9.7 | 0.5 | 2.81 | 90.09 |
Q. crassifolia | Q. crassipes | |||
Flavopunctelia praesignis | 10.8 | 120.0 | 40.46 | 40.46 |
Parmotrema eurysacum | 29.7 | 11.0 | 7.41 | 47.88 |
Parmotrema hypoleucium | 0 | 16.0 | 6.52 | 54.40 |
Flavoparmelia caperata | 37.1 | 36.1 | 5.81 | 60.21 |
Herpothallon sp. | 12.0 | 0 | 4.79 | 65.00 |
Flavopunctelia flaventior | 0 | 11.2 | 4.70 | 69.70 |
Heterodermia hypoleuca | 0 | 10.2 | 3.86 | 73.55 |
Punctelia perreticulata | 3.0 | 12.0 | 3.78 | 77.33 |
Punctelia hypoleucites | 0 | 8.8 | 3.57 | 80.9 |
Lepraria incana | 8.8 | 0 | 3.56 | 84.46 |
Dirinaria sp. | 7.6 | 0 | 2.95 | 87.41 |
Everniastrum sp. | 7.3 | 0 | 2.92 | 90.33 |
Cover | Contribution | Cumulative Contribution | ||
---|---|---|---|---|
Lichen Species | Q. crassifolia | Q. × dysophylla | ||
Parmotrema reticulatum | 35.3 | 70.5 | 17.76 | 17.76 |
Flavopunctelia flaventior | 11.1 | 34.2 | 11.35 | 29.11 |
Flavoparmelia caperata | 47.0 | 33.3 | 10.35 | 39.46 |
Parmotrema crinitum | 21.6 | 5.2 | 7.70 | 47.16 |
Heterodermia leucomela | 4.0 | 19.9 | 7.51 | 54.66 |
Parmotrema hypoleucium | 15.9 | 0.8 | 7.01 | 61.67 |
Lecanora albellula | 0.3 | 9.5 | 4.39 | 66.06 |
Leptogium chloromelum | 0 | 5.2 | 2.48 | 68.54 |
Leptogium burnetidae | 1.5 | 6.4 | 2.38 | 70.91 |
Flavopunctelia praesignis | 0 | 4.5 | 2.07 | 72.98 |
Heterodermia obscurata | 0 | 4.3 | 2.05 | 75.03 |
Sticta beavoisii | 4.5 | 0.2 | 2.04 | 77.07 |
Leptogium azureum | 3.9 | 0 | 1.87 | 78.94 |
Ramalina asahinae | 5.0 | 1.2 | 1.82 | 80.76 |
Lecanora symmicta | 3.8 | 0 | 1.76 | 82.52 |
Usnea ceratina | 3.3 | 0 | 1.57 | 84.09 |
Cladonia ochrochlora | 2.7 | 0 | 1.30 | 85.40 |
Strangospora moriformis | 0 | 2.5 | 1.18 | 86.57 |
Heterodermia pseudospeciosa | 0 | 2.4 | 1.15 | 87.72 |
Parmotrema eurysacum | 0 | 2.1 | 1.02 | 88.74 |
Teloschistes flavicans | 0 | 1.9 | 0.96 | 89.70 |
Lecanora horiza | 0 | 1.8 | 0.85 | 90.54 |
Q. × dysophylla | Q. crassipes | |||
Parmotrema reticulatum | 70.5 | 21.4 | 16.66 | 16.66 |
Heterodermia granulifera | 0 | 46.1 | 15.63 | 32.30 |
Flavopunctelia flaventior | 34.2 | 35.2 | 7.00 | 39.30 |
Flavopunctelia praesignis | 4.5 | 24.6 | 6.95 | 46.25 |
Flavoparmelia caperata | 33.3 | 15.6 | 6.74 | 52.99 |
Parmotrema apoteciada | 0 | 18.8 | 6.43 | 59.42 |
Heterodermia leucomela | 19.9 | 3.13 | 5.69 | 65.11 |
Parmotrema eurysacum | 2.1 | 14.9 | 4.31 | 69.42 |
Heterodermia pseudospeciosa | 2.4 | 14.1 | 4.01 | 73.43 |
Lecanora albellula | 9.5 | 0 | 3.26 | 76.69 |
Candelariella vitellina | 0 | 9.7 | 3.21 | 79.90 |
Phaeophysica sp. | 1.5 | 8.0 | 2.28 | 82.17 |
Parmotrema crinitum | 5.2 | 0 | 1.79 | 83.96 |
Leptogium chloromelum | 5.2 | 0 | 1.78 | 85.74 |
Heterodermia obscurata | 4.3 | 0 | 1.48 | 87.22 |
Leptogium burnetidae | 6.4 | 4.4 | 0.94 | 88.16 |
Ramalina complanata | 1.1 | 3.6 | 0.90 | 89.06 |
Everniastrum sorocheilum | 0 | 2.3 | 0.78 | 89.84 |
Cetrelia sp. | 0 | 2.3 | 0.75 | 90.60 |
Q. crassifolia | Q. crassipes | |||
Heterodermia granulifera | 0 | 46.1 | 15.47 | 15.47 |
Flavoparmelia caperata | 47.0 | 15.6 | 10.48 | 25.95 |
Flavopunctelia praesignis | 0 | 24.6 | 8.348 | 34.30 |
Flavopunctelia flaventior | 11.1 | 35.2 | 8.09 | 42.39 |
Parmotrema crinitum | 21.6 | 0 | 7.25 | 49.64 |
Parmotrema apoteciada | 0 | 18.8 | 6.37 | 56.00 |
Parmotrema hypoleucium | 15.9 | 0 | 5.28 | 61.28 |
Parmotrema reticulatum | 35.3 | 21.4 | 5.27 | 66.55 |
Parmotrema eurysacum | 0 | 14.9 | 4.99 | 71.54 |
Heterodermia pseudospeciosa | 0 | 14.1 | 4.66 | 76.20 |
Candelariella vitellina | 0 | 9.7 | 3.17 | 79.37 |
Phaeophysica sp. | 0.42 | 8.0 | 2.58 | 81.95 |
Leptogium azureum | 3.9 | 0 | 1.33 | 83.28 |
Ramalina asahinae | 4.9 | 1.3 | 1.28 | 84.56 |
Lecanora symmicta | 3.8 | 0 | 1.26 | 85.82 |
Ramalina complanata | 0 | 3.6 | 1.23 | 87.05 |
Sticta beavoisii | 4.5 | 1.0 | 1.19 | 88.25 |
Leptogium burnetidae | 1.5 | 4.4 | 1.00 | 89.25 |
Cladonia ochrochlora | 2.7 | 0 | 0.93 | 90.17 |
Variable | S.S. | F1,56 | p |
---|---|---|---|
Species richness | |||
Host oak taxa | 73.080 | 7.588 | <0.001 |
Hybrid zone | 73.768 | 15.313 | <0.001 |
Lichen cover | |||
Host oak taxa | 106,444 | 2.656 | >0.05 |
Hybrid zone | 14,640 | 0.7306 | >0.05 |
Shannon-Wiener diversity | |||
Host oak taxa | 2.597 | 7.970 | <0.001 |
Hybrid zone | 1.325 | 8.134 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Cuevas, L.; Melhado-Carboney, J.; Tovar-Sánchez, E. Natural Hybridization Between Quercus crassipes and Q. crassifolia (Fagaceae) Is a Key Process to Ensure the Biodiversity of Their Associated Lichen Community. Diversity 2025, 17, 69. https://doi.org/10.3390/d17010069
Valencia-Cuevas L, Melhado-Carboney J, Tovar-Sánchez E. Natural Hybridization Between Quercus crassipes and Q. crassifolia (Fagaceae) Is a Key Process to Ensure the Biodiversity of Their Associated Lichen Community. Diversity. 2025; 17(1):69. https://doi.org/10.3390/d17010069
Chicago/Turabian StyleValencia-Cuevas, Leticia, Jennie Melhado-Carboney, and Efraín Tovar-Sánchez. 2025. "Natural Hybridization Between Quercus crassipes and Q. crassifolia (Fagaceae) Is a Key Process to Ensure the Biodiversity of Their Associated Lichen Community" Diversity 17, no. 1: 69. https://doi.org/10.3390/d17010069
APA StyleValencia-Cuevas, L., Melhado-Carboney, J., & Tovar-Sánchez, E. (2025). Natural Hybridization Between Quercus crassipes and Q. crassifolia (Fagaceae) Is a Key Process to Ensure the Biodiversity of Their Associated Lichen Community. Diversity, 17(1), 69. https://doi.org/10.3390/d17010069