Ecological Traits and Intraguild Competition Mediate Spatial and Temporal Overlaps Among Sympatric Mesocarnivores
Abstract
:1. Introduction
- H1—The spatial and temporal overlaps will decrease in carnivore pairs (1) with the increase of body size differences (BSD), (2) in the same family, and (3) in carnivores with highly trophic overlap because such ecological traits increase the probability of direct interferences (i.e., kill, harassment, and intraguild predation), provoking spatiotemporal avoidances [1,12,13,22];
- H3—The spatial and temporal overlaps will decrease in the cold season because their trophic niches overlap under seasonal limited resource conditions (e.g., sharing small mammals, carrion, and fallen fruits [20,34]), promoting their spatiotemporal avoidances to decline direct encounter probabilities [14,35,36];
- H4—Spatial and/or temporal overlaps will decrease in the absence of large carnivores (wolves and brown bears, Ursus arctos) because the effects of large-dominant mesocarnivores (i.e., the jackal in our focal species) may increase because of ecological release [2,18]. Consequently, small, subordinate species must segregate spatiotemporal niches from the dominant predator to decline antagonistic encounters [7,20,22].
2. Materials and Methods
2.1. Study Area
2.2. Camera Trapping
2.3. Data Analyses
2.3.1. Dataset Preparation for Niche Overlap Analysis
2.3.2. Spatial and Temporal Overlap Estimation
2.3.3. Statistical Modeling
3. Results
3.1. Spatial Overlap
3.2. Temporal Overlap
4. Discussion
4.1. Ecological Trait Effects on Spatial and Temporal Overlaps (H1)
4.2. Effects of Anthropogenic Disturbances on Spatial and Temporal Overlaps (H2)
4.3. Effects of Season on Spatial and Temporal Overlaps (H3)
4.4. Effects of the Presence of Large Carnivores on Spatial and Temporal Overlaps (H4)
4.5. Methodological Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linnell, J.D.C.; Strand, O. Interference interactions, co-existence and conservation of mammalian carnivores. Divers. Distrib. 2000, 6, 169–176. [Google Scholar] [CrossRef]
- Ritchie, E.G.; Johnson, C.N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 2009, 12, 982–998. [Google Scholar] [CrossRef] [PubMed]
- Seveque, A.; Gentle, L.K.; Lopez-Bao, J.V.; Yarnell, R.W.; Uzal, A. Human disturbance has contrasting effects on niche partitioning within carnivore communities. Biol. Rev. 2020, 95, 1689–1705. [Google Scholar] [CrossRef]
- Wang, S.; Brose, U.; Gravel, D. Intraguild predation enhances biodiversity and functioning in complex food webs. Ecology 2019, 100, e02616. [Google Scholar] [CrossRef] [PubMed]
- Polis, G.A.; Myers, C.A.; Holt, R.D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Evol. Syst. 1989, 20, 297–330. [Google Scholar] [CrossRef]
- Arim, M.; Marquet, P.A. Intraguild predation: A widespread interaction related to species biology. Ecol. Lett. 2004, 7, 557–564. [Google Scholar] [CrossRef]
- Glen, A.S.; Dickman, C.R. Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol. Rev. 2005, 80, 387–401. [Google Scholar] [CrossRef]
- Lourenço, R.; Penteriani, V.; Rabaça, J.E.; Korpimäki, E. Lethal interactions among vertebrate top predators: A review of concepts, assumptions and terminology. Biol. Rev. 2014, 89, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Estes, J.A.; Terborgh, J.; Brashares, J.S.; Power, M.E.; Berger, J.; Bond, W.J.; Carpenter, S.R.; Essington, T.E.; Holt, R.D.; Jackson, J.B.C.; et al. Trophic downgrading of planet earth. Science 2011, 333, 301–306. [Google Scholar] [CrossRef]
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [PubMed]
- Sergio, F.; Caro, T.; Brown, D.; Clucas, B.; Hunter, J.; Ketchum, J.; McHugh, K.; Hiraldo, F. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 1–19. [Google Scholar] [CrossRef]
- Donadio, E.; Buskirk, S.W. Diet, morphology, and interspecific killing in carnivora. Am. Nat. 2006, 167, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Palomares, F.; Caro, T.M. Interspecific killing among mammalian carnivores. Am. Nat. 1999, 153, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Prugh, L.R.; Sivy, K.J. Enemies with benefits: Integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. 2020, 23, 902–918. [Google Scholar] [CrossRef]
- Dirzo, R.; Young, H.S.; Galetti, M.; Ceballos, G.; Isaac, N.J.B.; Collen, B. Defaunation in the Anthropocene. Science 2014, 345, 401–406. [Google Scholar] [CrossRef]
- Prugh, L.R.; Stoner, C.J.; Epps, C.W.; Bean, W.T.; Ripple, W.J.; Laliberte, A.S.; Brashares, J.S. The rise of the mesopredator. Bioscience 2009, 59, 779–791. [Google Scholar] [CrossRef]
- Roemer, G.W.; Gompper, M.E.; Van Valkenburgh, B. The ecological role of the mammalian mesocarnivore. Bioscience 2009, 59, 165–173. [Google Scholar] [CrossRef]
- Crooks, K.R.; Soule, M.E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 1999, 400, 563–566. [Google Scholar] [CrossRef]
- Monterroso, P.; Diaz-Ruiz, F.; Lukacs, P.M.; Alves, P.C.; Ferreras, P. Ecological traits and the spatial structure of competitive coexistence among carnivores. Ecology 2020, 10, e03059. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, H.; Newman, C.; Peeva, S.; Raichev, E.; Buesching, C.D.; Kaneko, Y. Spatio-temporal partitioning facilitates mesocarnivore sympatry in the Stara Planina Mountains, Bulgaria. Zoology 2020, 141, 125801. [Google Scholar] [CrossRef] [PubMed]
- Hardin, G. The competitive exclusion principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef]
- Hayward, M.W.; Slotow, R. Temporal partitioning of activity in large African carnivores: Tests of multiple hypothesis. S. Afr. J. Wildl. Res. 2009, 39, 109–125. [Google Scholar] [CrossRef]
- Monterroso, P.; Alves, P.C.; Ferreras, P. Catch me if you can: Diel activity patterns of mammalian prey and predators. Ethology 2013, 119, 1044–1056. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Gomes, P. Feeding resource partitioning among four sympatric carnivores in the Peneda-Geres National Park (Portugal). J. Zool. 2004, 263, 275–283. [Google Scholar] [CrossRef]
- Lanszki, J.; Kormendi, S.; Hancz, C.; Zalewski, A. Feeding habits and trophic niche overlap in a Carnivora community of Hungary. Acta Theriol. 1999, 44, 429–442. [Google Scholar] [CrossRef]
- Lanszki, J.; Heltai, M.; Kover, G.; Zalewski, A. Non-linear relationship between body size of terrestrial carnivores and their trophic niche breadth and overlap. Basic Appl. Ecol. 2019, 38, 36–46. [Google Scholar] [CrossRef]
- Sivy, K.J.; Pozzanghera, C.B.; Grace, J.B.; Prugh, L.R. Fatal attraction? Intraguild facilitation and suppression among predators. Am. Nat. 2017, 190, 663–679. [Google Scholar] [CrossRef]
- Monterroso, P.; Alves, P.C.; Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in southwestern Europe: Implications for species coexistence. Behav. Ecol. Sociobiol. 2014, 68, 1403–1417. [Google Scholar] [CrossRef]
- Vilella, M.; Ferrandiz-Rovira, M.; Sayol, F. Coexistence of predators in time: Effects of season and prey availability on species activity within a Mediterranean carnivore guild. Ecol. Evol. 2020, 10, 11408–11422. [Google Scholar] [CrossRef]
- Wang, Y.; Allen, M.L.; Wilmers, C.C. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cluz Mountains of California. Biol. Conserv. 2015, 190, 23–33. [Google Scholar] [CrossRef]
- Tsunoda, H.; Peeva, S.; Raichev, E.; Kirilov, K.B.; Uzunova, K.; Kaneko, Y. Anthropogenic activities facilitate temporal overlaps and spatial partitions among sympatric canids in a human-modified landscape of Bulgaria. Food Webs 2024, 39, e00344. [Google Scholar] [CrossRef]
- Seveque, A.; Gentle, L.K.; Lopez-Bao, J.V.; Yarnell, R.W.; Uzal, A. Impact of human disturbance on temporal partitioning within carnivore communities. Mamm. Rev. 2022, 52, 67–81. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S. The influence of human disturbance on wildlife nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, H.; Raichev, E.G.; Newman, C.; Masuda, R.; Georgiev, D.M.; Kaneko, Y. Food niche segregation between sympatric golden jackals and red foxes in Central Bulgaria. J. Zool. 2017, 303, 64–71. [Google Scholar] [CrossRef]
- Waggershauser, C.N.; Ruffino, L.; Kortland, K.; Lambin, X. Lethal interactions among forest-grouse predators are numerous, motivated by hunger and carcasses, and their impacts determined by the demographic value of the victims. Ecol. Evol. 2021, 11, 7164–7186. [Google Scholar] [CrossRef] [PubMed]
- Wikenros, C.; Stahlberg, S.; Sand, H. Feeding under high risk of intraguild predation: Vigilance patterns of two medium-sized generalist predators. J. Mammal. 2014, 95, 862–870. [Google Scholar] [CrossRef]
- Velikov, V.; Stoyanova, M. Landscapes and climate of Bulgaria. In Biogeography and Ecology of Bulgaria; Fet, V., Popov, A., Eds.; Springer: Dordrecht, Germany, 2007; pp. 589–605. [Google Scholar]
- Pettorelli, N.; Barlow, J.; Stephens, P.A.; Durant, S.M.; Connor, B.; Schulte to Buhne, H.; Sandom, C.J.; Wentworth, J.; du Toitet, J.T. Making rewilding fit for policy. J. Appl. Ecol. 2018, 55, 1114–1125. [Google Scholar] [CrossRef]
- Tsunoda, H.; Ito, K.; Peeva, S.; Raichev, E.; Kaneko, Y. Spatial and temporal separation between the golden jackal and three sympatric carnivores in a human-modified landscape in Central Bulgaria. Zool. Ecol. 2018, 28, 172–179. [Google Scholar] [CrossRef]
- Tsunoda, H.; Peeva, S.; Raichev, E.; Kronawetter, T.; Kirilov, K.B.; Georgiev, D.; Kaneko, Y. Patterns in spatial distribution and diel activity in carnivore guilds (Carnivora). J. Vertebr. Biol. 2022, 71, 22018. [Google Scholar] [CrossRef]
- Popov, V. Terrestrial mammals of Bulgaria: Zoogeographical and ecological patterns of distribution. In Biogeography and Ecology of Bulgaria; Fet, V., Popov, A., Eds.; Springer: Dordrecht, Germany, 2007; pp. 9–37. [Google Scholar]
- Raichev, E. Determination of stone marten (Martes foina) and pine marten (Martes martes) in natural habitats using camera traps. Agric. Sci. Technol. 2018, 10, 160–163. [Google Scholar]
- Meek, P.D.; Ballard, G.; Claridge, A.; Kays, R.; Moseby, K.; O’Brien, T.; O’Connell, A.; Sanderson, J.; Swann, D.E.; Tobler, M.; et al. Recommended guiding principles for reporting on camera trapping research. Biodivers. Conserv. 2014, 23, 2321–2343. [Google Scholar] [CrossRef]
- Lashley, M.A.; Cove, M.V.; Chitwood, M.C.; Penido, G.; Gardner, B.; DePerno, C.S.; Moorman, C.E. Estimating wildlife activity curves: Comparison of methods and sample size. Sci. Rep. 2018, 8, 4173. [Google Scholar] [CrossRef] [PubMed]
- Pianka, E.R. The structure of lizard communities. Annu. Rev. Ecol. Evol. Syst. 1973, 4, 53–74. [Google Scholar] [CrossRef]
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- O’Brien, T.G.; Kinnaird, M.F.; Wibisono, H.T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 2003, 6, 131–139. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Hart, E.M.; Ellison, A.M. EcoSimR: Null Model Analysis for Ecological Data, R Package Version 0.1.0. 2015. Available online: http://github.com/gotellilab/EcoSimR (accessed on 7 August 2023).
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. Available online: https://www.r-project.org/ (accessed on 12 November 2024).
- Meredith, M.; Ridout, M. Overlap: Estimates of coefficient of overlapping for animal activity patterns. 2021. Available online: https://github.com/mikemeredith/overlap (accessed on 1 August 2024).
- Goszczynski, J.; Jedrzejewska, B.; Jedrzejewski, W. Diet composition of badgers (Meles meles) in a pristine forest and rural habitats of Poland compared to other European populations. J. Zool. 2000, 250, 495–505. [Google Scholar] [CrossRef]
- Lozano, J.; Moleon, M.; Virgos, E. Biogeographical patterns in the diet of the wildcat, Felis silvestris Schreber, in Eurasia: Factors affecting the trophic diversity. J. Biogeogr. 2006, 33, 1076–1085. [Google Scholar] [CrossRef]
- Soe, E.; Davison, J.; Suld, K.; Valdman, H.; Laurimaa, L.; Saarma, U. Europe-wide biogeographical patterns in the diet of an ecologically and epidemiologically important mesopredator, the red fox Vulpes vulpes: A quantitative review. Mamm. Rev. 2015, 47, 198–211. [Google Scholar] [CrossRef]
- Tsunoda, H.; Saito, M.U. Variations in the trophic niches of the golden jackal Canis aureus across the Eurasian continent associated with biogeographic and anthropogenic factors. J. Vertebr. Biol. 2020, 69, 20056. [Google Scholar] [CrossRef]
- Zhou, Y.; Newman, C.; Xu, W.; Buesching, C.D.; Zalewski, A.; Kaneko, Y.; Macdonald, D.W.; Xie, Z. Biogeographical variation in the diet of Holarctic martens (genus Martes, Mammalia: Carnivora: Mustelidae): Adaptive foraging in generalists. J. Biogeogr. 2011, 38, 137–147. [Google Scholar] [CrossRef]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The human footprint and the last of the wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. Bioscience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- QGIS Geographic Information System. QGIS Association. Available online: http://www.qgis.org (accessed on 2 September 2024).
- WCS-CIESIN-Columbia Univ. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). 2005. Available online: https://doi.org/10.7927/H4M61H5F (accessed on 21 October 2024).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.48.415.1. 2024. Available online: https://doi.org/10.32614/CRAN.package.MuMIn (accessed on 27 August 2024).
- Farkas, A.; Janoska, F.; Fodor, J.T.; Nahlik, A. The high level of nutritional niche overlap between red fox (Vulpes vulpes) and sympatric golden jackal (Canis aureus) affects the body weight of juvenile foxes. Eur. J. Wildl. Res. 2017, 63, 46. [Google Scholar] [CrossRef]
- Scheinin, S.; Yom-Tov, Y.; Motro, U.; Geffen, E. Behavioural responses of red foxes to an increase in the presence of golden jackals: A field experiment. Anim. Behav. 2006, 71, 577–584. [Google Scholar] [CrossRef]
- Shamoon, H.; Maor, R.; Saltz, D.; Dayan, T. Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biol. Conserv. 2018, 226, 32–41. [Google Scholar] [CrossRef]
- Tsunoda, H. Niche overlaps and partitioning between Eurasian golden jackal Canis aureus and sympatric red fox Vulpes vulpes. Proc. Zool. Soc. 2022, 75, 143–151. [Google Scholar] [CrossRef]
- Barros, A.L.; Raposo, D.; Almeida, J.D.; Jesus, H.; Oliveira, M.A.; Fernandes, C.R.; MacKenzie, D.I.; Santos-Reis, M. An integrated assessment of niche partitioning reveals mechanisms of coexistence between mesocarnivores. Glob. Ecol. Conserv. 2024, 54, e03116. [Google Scholar] [CrossRef]
- Zalewska, K.; Waggershauser, C.N.; Kortland, K.; Lambin, X. The best defence is not being there: Avoidance of larger carnivores is not driven by risk intensity. J. Zool. 2021, 315, 110–122. [Google Scholar] [CrossRef]
- Cox, D.T.C.; Gaston, K.J. Cathemerality: A key temporal niche. Biol. Rev. 2024, 99, 329–347. [Google Scholar] [CrossRef] [PubMed]
- Kronfeld-Schor, N.; Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 153–181. [Google Scholar] [CrossRef]
- Tsunoda, H.; Peeva, S.; Raichev, E.; Ito, K.; Kaneko, Y. Autumn dietary overlaps among three sympatric mesocarnivores in the central part of Stara Planina Mountain, Bulgaria. Mamm. St. 2019, 44, 275–281. [Google Scholar] [CrossRef]
- Kitchener, A.C.; Meloro, C.; Williams, T.M. Form and function of the musteloids. In Biology and Conservation of Musteloids; Macdonald, D.W., Newman, C., Harrington, L.A., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 92–128. [Google Scholar] [CrossRef]
- Lange, P.N.A.M.J.G.; Lelieveld, G.; de Knegt, H.J. Diet composition of the golden jackal Canis aureus in south-east Europe: A review. Mamm. Rev. 2021, 51, 207–213. [Google Scholar] [CrossRef]
- Lanszki, J.; Kurys, A.; Szabo, L.; Nagyapati, N.; Porter, L.B.; Heltai, M. Diet composition of the golden jackal and the sympatric red fox in an agricultural area (Hungary). Folia Zool. 2016, 65, 310–322. [Google Scholar] [CrossRef]
- Filacorda, S.; Comin, A.; Franchini, M.; Frangini, L.; Pesaro, S.; Pezzin, E.N.; Prandi, A. Cortisol in hair: Do habitat fragmentation and competition with golden jackal (Canis aureus) measurably affect the long-term physiological response in European wildcat (Felis silvestris)? Ann. Zool. Fenn. 2021, 59, 1–16. [Google Scholar] [CrossRef]
- Pecorella, S.; Lapini, L. Camera trapping of the golden jackal (Canis aureus moreoticus): Data from Italian Karst (northeastern Italy, Gorizia Province). Boll. Mus. St. Nat. Venezia 2014, 65, 215–227. [Google Scholar]
- Rodriguez Curras, M.; Donadio, E.; Middleton, A.D.; Pauli, J.N. Carnivore niche partitioning in a human landscape. Am. Nat. 2022, 199, 496–509. [Google Scholar] [CrossRef]
- Smith, J.A.; Thomas, A.C.; Levi, T.; Wang, Y.; Wilmers, C.C. Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos 2018, 127, 890–901. [Google Scholar] [CrossRef]
- Frey, S.; Volpe, J.P.; Heim, N.A.; Paczkowski, J.; Fisher, J.T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 2020, 129, 1128–1140. [Google Scholar] [CrossRef]
- Šálek, M.; Červinka, J.; Banea, O.C.; Krofel, M.; Cirovic, D.; Selanec, I.; Penezic, A.; Grill, S.; Riegert, J. Population densities and habitat use of the golden jackal (Canis aureus) in farmlands across the Balkan Peninsula. Eur. J. Wildl. Res. 2014, 60, 193–200. [Google Scholar] [CrossRef]
- Šálek, M.; Červinka, J.; Padyšáková, E.; Kreisinger, J. Does spatial co-occurrence of carnivores in a Central European agricultural landscape follow the null model? Eur. J. Wildl. Res. 2014, 60, 99–107. [Google Scholar] [CrossRef]
- Kowalczyk, R.; Bogumila, J.; Zalewski, A. Annual and circadian activity patterns of badgers (Meles meles) in Białowieża Primeval Forest (eastern Poland) compared with other Palaearctic populations. J. Biogeogr. 2003, 30, 463–472. [Google Scholar] [CrossRef]
- Peeva, S.; Raichev, E.; Georgiev, D.; Yankow, Y.; Tsunoda, H.; Kaneko, Y. European badger’s mating activities associated with moon phase. J. Ethol. 2023, 41, 15–24. [Google Scholar] [CrossRef]
- Bonsen, G.T.; Wallach, A.D.; Ben-Ami, D.; Keynan, O.; Khalilieh, A.; Shanas, U.; Wooster, E.I.F.; Ramp, D. Tolerance of wolves shapes desert canid communities in the Middle East. Glob. Ecol. Conserv. 2022, 36, e02139. [Google Scholar] [CrossRef]
- Krofel, M.; Giannatos, G.; Cirovic, D.; Stoyanov, S.; Newsome, T.M. Golden jackal expansion in Europe: A case of mesopredator release triggered by continentwide wolf persecution? Hystrix 2017, 28, 9–15. [Google Scholar]
- Newsome, T.M.; Greenville, A.C.; Cirovic, D.; Dickman, C.R.; Johnson, C.N.; Krofel, M.; Letnic, M.; Ripple, W.J.; Ritchie, E.G.; Stoyanov, S.; et al. Top predators constrain mesopredator distributions. Nat. Commun. 2017, 8, 15469. [Google Scholar] [CrossRef]
- Spassov, N.; Acosta-Pankov, I. Dispersal history of the golden jackal (Canis aureus moreoticus Geoffroy, 1835) in Europe and possible causes of its recent population explosion. Biodivers. Data J. 2019, 7, e34825. [Google Scholar] [CrossRef] [PubMed]
- Wikenros, C.; Sand, H.; Ahlqvist, P.; Liberg, O. Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS ONE 2013, 8, e77373. [Google Scholar] [CrossRef]
- Lindstrom, E.R.; Brainerd, S.M.; Helldin, J.O.; Overskaug, K. Pine marten–red fox interactions: A case intraguild predation? Annal. Zool. Fenn. 1995, 32, 123–130. [Google Scholar]
- Levi, T.; Wilmers, C.C. Wolves–coyotes–foxes: A cascade among carnivores. Ecology 2012, 93, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Selva, N.; Jedrzejewska, B.; Jedrzejewski, W.; Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 2005, 83, 1590–1601. [Google Scholar] [CrossRef]
- Kolowski, J.M.; Oley, J.; McShea, W.J. High-density camera trap grid reveals lack of consistency in detection and capture rates across space and time. Ecosphere 2021, 12, e03350. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. vegan: Community Ecology Package. R package version 2.7-0. 2024. Available online: https://vegandevs.github.io/vegan/ (accessed on 18 October 2024).
- Fonda, F.; Chiatante, G.; Meriggi, A.; Mustoni, A.; Armanini, M.; Mosini, A.; Spada, A.; Lombardini, M.; Righetti, D.; Granata, M.; et al. Spatial distribution of the pine marten (Martes martes) and stone marten (Martes foina) in the Italian Alps. Mamm. Biol. 2021, 101, 345–356. [Google Scholar] [CrossRef]
- Wereszczuk, A.; Zalewski, A. Spatial niche segregation of sympatric stone marten and pine marten—Avoidance of competition or selection of optimal habitat? Plosone 2015, 10, e0139852. [Google Scholar] [CrossRef] [PubMed]
- Sanglas, A.; Palomares, F. Response of a mesocarnivore community to a new food resource: Recognition, exploitation, and interspecific competition. Eur. J. Wildl. Res. 2022, 68, 51. [Google Scholar] [CrossRef]
Study Site | Site ID | Elevational Range | Studied Duration (Days) | Total Trapping Efforts (Days) | Number of Camera Traps Installed |
---|---|---|---|---|---|
Stara Planina Mts., northern slope | NSP1 | 752–1471 m | May 2018–October 2019 (492) | 1662 | 4 |
NSP2 | 554–1203 m | October 2018–November 2019 (398) | 1996 | 6 | |
NSP3 | 584–964 m | September 2018–November 2019 (413) | 1520 | 5 | |
Stara Planina Mts., southern slope | SSP1 | 581–1250 m | July 2016–October 2017 (454) | 6612 | 15 |
SSP2 | 393–464 m | October 2021–October 2022 (338) | 1424 | 5 | |
Upper Thracian Plain | UTP1 | 164–361 m | June–July 2015 (43), March–August 2016 (175) | 431 | 17 |
UTP2 | 158–281 m | November 2021–October 2022 (327) | 1835 | 8 | |
Eastern Rhodope Mts., Alda River valley | ERM | 171–499 m | June 2019–March 2020 (254) | 1707 | 11 |
Site ID. | Jackal | Badger | Fox | Wildcat | Marten | |||||
---|---|---|---|---|---|---|---|---|---|---|
Season | Warm | Cold | Warm | Cold | Warm | Cold | Warm | Cold | Warm | Cold |
NSP1 (B,W) | 19 | 1 | 64 | 20 | 12 | 10 | 16 | 8 | 3 | 1 |
NSP2 (B,W) | 84 | 12 | 134 | 69 | 87 | 55 | 19 | 4 | 43 | 19 |
NSP3 (N) | 89 | 30 | 218 | 196 | 23 | 22 | 11 | 12 | 9 | 16 |
SSP1 (B) | 254 | 191 | 192 | 37 | 144 | 54 | 90 | 54 | 198 | 62 |
SSP2 (B,W) | 7 | 4 | 0.050 | 116 | 25 | 46 | 17 | 7 | 26 | 39 |
UTP1 (N) | 87 | - | 0.036 | - | 38 | - | 0 | - | 29 | - |
UTP2 (N) | 198 | 757 | 0.221 | 466 | 49 | 136 | 0 | 2 | 26 | 70 |
ERM (N) | 39 | 40 | 0.380 | 65 | 70 | 59 | 31 | 24 | 31 | 54 |
Hypo. | Covariate | Coefficient | Standard Error | z | p |
---|---|---|---|---|---|
– | (Intercept) | −0.791 | 0.234 | −3.383 | <0.001 |
H1 | Taxon (different family) | 0.305 | 0.147 | 2.080 | 0.038 |
Body size differences | −0.178 | 0.184 | −0.968 | 0.333 | |
Trophic overlap (intermediate) | −0.174 | 0.139 | −1.255 | 0.210 | |
Trophic overlap (high) | 0.050 | 0.142 | 0.350 | 0.727 | |
H2 | Human footprint index | 0.036 | 0.082 | 0.439 | 0.661 |
H3 | Cold season | −0.135 | 0.125 | −1.075 | 0.282 |
H4 | Large carnivore (Bear) | 0.221 | 0.220 | 1.008 | 0.314 |
Large carnivore (Bear + Wolf) | 0.380 | 0.174 | 2.188 | 0.029 |
Hypo. | Covariate | Coefficient | Standard Error | z | p |
---|---|---|---|---|---|
– | (Intercept) | −0.391 | 0.057 | −6.850 | <0.001 |
H1 | Taxon (different family) | −0.088 | 0.038 | −2.335 | 0.020 |
Body size differences | 0.132 | 0.047 | 2.812 | 0.005 | |
Trophic overlap (intermediate) | −0.109 | 0.036 | −3.065 | 0.002 | |
Trophic overlap (high) | 0.044 | 0.037 | 1.198 | 0.231 | |
H2 | Human footprint index | 0.011 | 0.015 | 0.776 | 0.438 |
H3 | Cold season | 0.028 | 0.031 | 0.906 | 0.365 |
H4 | Large carnivore (Bear) | −0.021 | 0.037 | −0.556 | 0.578 |
Large carnivore (Bear + Wolf) | −0.0003 | 0.035 | −0.011 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsunoda, H.; Peeva, S.; Raichev, E.; Kaneko, Y. Ecological Traits and Intraguild Competition Mediate Spatial and Temporal Overlaps Among Sympatric Mesocarnivores. Diversity 2025, 17, 108. https://doi.org/10.3390/d17020108
Tsunoda H, Peeva S, Raichev E, Kaneko Y. Ecological Traits and Intraguild Competition Mediate Spatial and Temporal Overlaps Among Sympatric Mesocarnivores. Diversity. 2025; 17(2):108. https://doi.org/10.3390/d17020108
Chicago/Turabian StyleTsunoda, Hiroshi, Stanislava Peeva, Evgeniy Raichev, and Yayoi Kaneko. 2025. "Ecological Traits and Intraguild Competition Mediate Spatial and Temporal Overlaps Among Sympatric Mesocarnivores" Diversity 17, no. 2: 108. https://doi.org/10.3390/d17020108
APA StyleTsunoda, H., Peeva, S., Raichev, E., & Kaneko, Y. (2025). Ecological Traits and Intraguild Competition Mediate Spatial and Temporal Overlaps Among Sympatric Mesocarnivores. Diversity, 17(2), 108. https://doi.org/10.3390/d17020108