An eDNA-Based SNP Assay for Ungulate Species and Sex Identification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Mitochondrial Sequences
2.3. Amelogenin Gene Sequencing
2.4. SNP Identification and Design
2.5. SNP Arrays
2.6. Genotyping
3. Results
3.1. SNP Design and Utility
3.2. SNP Genotyping
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Taberlet, P.; Coissac, E.; Hajibabaei, M.; Rieseberg, L.H. Environmental DNA. Mol. Ecol. 2012, 21, 1789–1793. [Google Scholar] [CrossRef] [PubMed]
- Darling, J.A.; Blum, M.J. DNA-based methods for monitoring invasive species: A review and prospectus. Biol. Invasions 2017, 9, 751–765. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. UK 2008, 4, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Jerde, C.L.; Mahon, A.R.; Chadderton, W.L.; Lodge, D.M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 2011, 4, 150–157. [Google Scholar] [CrossRef]
- Andersen, K.; Bird, K.L.; Rasmussen, M.; Haile, J.; Breuning-Madsen, H.E.; Kjaer, K.H.; Orlando, L.; Gilbert, M.T.P.; Willerslev, E. Meta-barcoding of ‘dirt’DNA from soil reflects vertebrate biodiversity. Mol. Ecol. 2012, 21, 1966–1979. [Google Scholar] [CrossRef] [PubMed]
- Bienert, F.; De Danieli, S.; Miquel, C.; Coissac, E.; Poillot, C.; BRUN, J.J.; Taberlet, P. Tracking earthworm communities from soil DNA. Mol. Ecol. 2012, 21, 2017–2030. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.V.; Cromsigt, J.P.; Spong, G. DNA left on browsed twigs uncovers bite-scale resource use patterns in European ungulates. Oecologia 2015, 178, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.V.; Königsson, H.; Danell, K.; Spong, G. Browsed twig environmental DNA: Diagnostic PCR to identify ungulate species. Mol. Ecol. Resour. 2012, 12, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.V.; Spong, G. Ungulate browsing on conifers during summer as revealed by DNA. Scandinavian. J. For. Res. Jpn. 2014, 29, 650–652. [Google Scholar]
- Wheat, R.E.; Allen, J.M.; Miller, S.D.L.; Wilmers, C.C.; Levi, T. Environmental DNA from Residual Saliva for Efficient Noninvasive Genetic Monitoring of Brown Bears (Ursus arctos). PLoS ONE 2016, 11, e0165259. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Mattock, H.; Dubois-Paganon, C.; Bouvet, J. Sexing free-ranging brown bears Ursus arctos using hairs found in the field. Mol. Ecol. 1993, 2, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, T.J.; Hundertmark, K.J. Sex identification of northern ungulates using low quality and quantity DNA. Conserv. Genet. 2009, 10, 1189–1193. [Google Scholar] [CrossRef]
- Deagle, B.; Eveson, J.P.; Jarman, S. Quantification of damage in DNA recovered from highly degraded samples—A case study on DNA in faeces. Front. Zool. 2006, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Griffin, S.; Goossens, B.; Questiau, S.; Manceau, V.; Escaravage, N.; Waits, L.P.; Bouvet, J. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996, 24, 3189–3194. [Google Scholar] [CrossRef] [PubMed]
- Borsting, C.; Mogensen, H.S.; Morling, N. Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples. Forensic Sci. Int. Genet. 2013, 7, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Sobrino, B.; Brion, M.; Carracedo, A. SNPs in forensic genetics: A review on SNP typing methodologies. Forensic Sci. Int. 2005, 154, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Höglund, J.; Cortazar-Chinarro, M.; Jarnemo, A.; Thulin, C.G. Genetic variation and structure in Scandinavian red deer (Cervus elaphus): Influence of ancestry, past hunting, and restoration management. Biol. J. Linn. Soc. 2013, 109, 43–53. [Google Scholar] [CrossRef]
- Thulin, C.G. Microsatellite investigation of roe deer (Capreolus capreolus) in Scandinavia reveals genetic differentiation of a Baltic Sea Island population. Eur. J. Wildl. Res. 2006, 52, 228–235. [Google Scholar] [CrossRef]
- Gurgul, A.; Radko, A.; Slota, E. Characteristics of X- and Y-chromosome specific regions of the amelogenin gene and a PCR-based method for sex identification in red deer (Cervus elaphus). Mol. Biol. Rep. 2010, 37, 2915–2918. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.; Schnabel, B. DNA isolation by a rapid method from human blood samples: Effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem. Genet. 1993, 31, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Gusmão, L.; Haned, H.; Mayr, W.R.; Morling, N.; Parson, W.; Prieto, L.; Prinz, M.; Schneider, H.; Schneider, P.M.; et al. DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods. Forensic Sci. Int. Genet. 2012, 6, 679–688. [Google Scholar] [CrossRef] [PubMed]
Species Identification | Sex Identification | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ce19mt | Ce18mt | Ce17mt | Ce16mt | Ce12ay | Ce11ay | Ce10ay | Ce04ax | Ce03ax | Ce02ax | ||
Moose | G | C | T | C | Male moose | T | T | C | C | T | |
Female moose | C | C | T | ||||||||
Fallow deer | G | C | C | C | Male fallow | C | C | T | |||
Female fallow | C | C | T | ||||||||
Red deer | A | T | T | C | Male red | C | T | C | C | T | |
Female red | C | C | T | ||||||||
Roe deer | A | C | T | A | Male roe | C | T | T | C | C | T |
Female roe | C | C | T | ||||||||
Drop-out Rate (%) | 33.2 | 27.2 | 21.6 | 12.7 | 53.7 | 83.6 | 80.6 |
Species | Fresh | Known | Field | Total |
---|---|---|---|---|
Moose | 1 | 7 | 7 | 15 |
Roe deer | 0 | 6 | 1 | 7 |
Fallow deer | 5 | 2 | 3 | 10 |
Red deer | 1 | 15 | 2 | 18 |
Ambiguous | 1 | 0 | 7 | 8 |
Did not work | 0 | 2 | 7 | 9 |
Total tested | 8 | 32 | 27 | 67 |
% Success | 87.5 | 93.8 | 48.1 | 74.6 |
Days after Browsing | Number of Samples | Number of Positive Species Identifications | Number of Positive Sex Identifications |
---|---|---|---|
0 | 8 | 8 | 6 |
14 | 5 | 5 | 4 |
41 | 3 | 2 | 1 |
71 | 5 | 4 | 1 |
84 | 2 | 2 | 2 |
99 | 2 | 2 | 0 |
113 | 3 | 3 | 0 |
128 | 2 | 2 | 0 |
145 | 1 | 1 | 1 |
155 | 1 | 1 | 0 |
Field (unknown age) | 35 | 28 | 4 |
TOTAL | 67 | 58 | 19 |
PERCENT | 74.6 | 28.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nichols, R.V.; Spong, G. An eDNA-Based SNP Assay for Ungulate Species and Sex Identification. Diversity 2017, 9, 33. https://doi.org/10.3390/d9030033
Nichols RV, Spong G. An eDNA-Based SNP Assay for Ungulate Species and Sex Identification. Diversity. 2017; 9(3):33. https://doi.org/10.3390/d9030033
Chicago/Turabian StyleNichols, Ruth V., and Göran Spong. 2017. "An eDNA-Based SNP Assay for Ungulate Species and Sex Identification" Diversity 9, no. 3: 33. https://doi.org/10.3390/d9030033
APA StyleNichols, R. V., & Spong, G. (2017). An eDNA-Based SNP Assay for Ungulate Species and Sex Identification. Diversity, 9(3), 33. https://doi.org/10.3390/d9030033