ZnO-Based Amperometric Enzyme Biosensors
Abstract
:1. Introduction
2. ZnO-Based Enzyme Biosensing
2.1. Glucose
2.2. H2O2
2.3. Phenol
2.4. Cholesterol
2.5. Others
3. Discussion
4. Conclusions
Acknowledgments
References
- Dzyadevych, S.V.; Arkhypova, V.N.; Soldatkin, A.P.; El'skaya, A.V.; Martelet, C.; Jaffrezic-Renault, N. Amperometric enzyme biosensors: Past, present and future. IRBM 2008, 29, 171–180. [Google Scholar]
- Wang, J. Electroanalysis and biosensors. Anal. Chem 1995, 67, 487–492. [Google Scholar]
- Burmeister, J.J.; Gerhardt, G.A. Self referencing ceramic based multisite microelectrodes for the detection and elimination of interferences from the measurement of L-glutamate and other analytes. Anal. Chem 2001, 73, 1037–1042. [Google Scholar]
- Norton, D.P.; Heo, Y.W.; Ivill, M.P.; Pearton, S.J.; Chisholm, M.F.; Steiner, T. ZnO: growth, doping & processing. Mater. Today 2004, 7, 34–40. [Google Scholar]
- Sun, X.W.; Kwok, H.S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J. Appl. Phys 1999, 86, 408–411. [Google Scholar]
- Tian, Z.R.R.; Voigt, J.A.; Liu, J.; Mckenzie, B.; Mcdermott, M.J. Biommetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc 2002, 124, 12954–12955. [Google Scholar]
- Sberveglieri, G.; Groppelli, S.; Nelli, P.; Tintinelli, A.; Giunta, G. A novel method for the proparation of NH3 sensors based on ZnO-In thin films. Sens. Actuat 1995, 24–25, 588–590. [Google Scholar]
- Rodriguez, J.A.; Jirsak, T.; Dvorak, J.; Sambasivan, S.; Fischer, D. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and density functional studies on the formation of NO3. J. Phys. Chem 2000, 104, 319–328. [Google Scholar]
- Lei, C.X.; Hu, S.Q.; Gao, N.; Shen, G.L.; Yu, R.Q. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. Bioelectrochemistry 2004, 65, 33–39. [Google Scholar]
- Battaglini, F.; Bartlett, P.N.; Wang, J.H. Covalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucose. Anal. Chem 2000, 72, 502–509. [Google Scholar]
- Eggins, B.R. Biosensors: an introduction; John Wiley & Sons Limited: New York, NY, USA, 1996. [Google Scholar]
- Singh, M.; Verma, N.; Garg, A.K.; Redhu, N. Urea biosensors. Sens. Actuat 2008, 134, 345–351. [Google Scholar]
- Wang, J.X.; Sun, X.W.; Wei, A.; Lei, Y.; Cai, X.P.; Li, C.M.; Dong, Z.L. Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett 2006, 88, 233106. [Google Scholar]
- Weber, J.; Jeedigunta, S.; Kumar, A. Fabrication and characterization of ZnO nanowire arrays with an investigation into electrochemical sensing capabilities. J. Nanomat 2008, 2008, 638523. [Google Scholar]
- Zang, J.F.; Li, C.M.; Cui, X.Q.; Wang, J.X.; Sun, X.W.; Dong, H.; Sun, C.Q. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 2007, 19, 1008–1014. [Google Scholar]
- Umar, A.; Rahman, M.M.; Kim, S.H.; Hahn, Y.B. ZnO nanonails: Synthesis and their application as glucose biosensor. J. Nanosci. Nanotechnol 2008, 8, 3216–3221. [Google Scholar]
- Wei, A.; Sun, X.W.; Wang, J.X.; Lei, Y.; Cai, X.P.; Li, C.M.; Dong, Z.L.; Huang, W. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl. Phys. Lett 2006, 89, 123902. [Google Scholar]
- Dai, Z.H.; Shao, G.J.; Hong, J.M.; Bao, J.C.; Shen, J. Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosens. Bioelectron 2009, 24, 1286–1291. [Google Scholar]
- Zhao, Z.W.; Chen, X.J.; Tay, B.K.; Chen, J.S.; Han, Z.J.; Khor, K.A. A novel amperometric biosensor based on ZnO: Co nanoclusters for biosensing glucose. Biosens. Bioelectron 2007, 23, 135–139. [Google Scholar]
- Liu, J.P.; Guo, C.X.; Li, C.M.; Li, Y.Y.; Chi, Q.B.; Huang, X.T.; Liao, L.; Yu, T. Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem. Commun 2009, 11, 202–205. [Google Scholar]
- Zhao, Z.W.; Tay, B.K.; Chen, J.S.; Hu, J.F.; Lim, B.C.; Li, G.P. Large magnetic moment observed in Co-doped ZnO nanocluster-assembled thin films at room temperature. Appl. Phys. Lett 2007, 90, 152502. [Google Scholar]
- Zhao, Z.W.; Tay, B.K.; Chen, J.S.; Hu, J.F.; Sun, X.W.; Tan, S.T. Optical properties of nanocluster-assembled ZnO thin films by nanocluster-beam deposition. Appl. Phys. Lett 2005, 87, 251912. [Google Scholar]
- Zhang, Y.W.; Zhang, Y.; Wang, H.; Yan, B.; Shen, G.L.; Yu, R.Q. An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. J. Electroanal. Chem 2009, 627, 9–14. [Google Scholar]
- Matsubara, C.; Kawamoto, N.; Takamura, K. Oxo [5,10,15,20-tetra (4-pyridyl) porphyrinato] titanium (IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 1992, 117, 1781–1784. [Google Scholar]
- Hurdis, E.C.; Romeyn, H.J. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal. Chem 1954, 26, 320–325. [Google Scholar]
- Nakashima, K.; Maki, K.; Kawaguchi, S.; Akiyama, S.; Tsukamoto, Y.; Kazuhiro, I. Anal. Sci 1991, 7, 709–713.
- Cao, X.; Ning, W.; Li, L.D.; Guo, L. Synthesis and characterization of waxberry-like microstructures ZnO for biosensors. Sens. Actuat 2008, 129, 268–273. [Google Scholar]
- Zhu, X.L.; Yuri, I.; Gan, X.; Suzuki, I.; Li, G.X. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens. Bioelectron 2007, 22, 1600–1604. [Google Scholar]
- Yang, Y.H.; Yang, M.H.; Jlang, J.H.; Shen, G.L.; Yu, R.Q. A novel biomolecular immobilization matrix based on nanoporous ZnO/Chitosan composite film for amperometric hydrogen peroxide biosensor. Chin. Chem. Lett 2005, 16, 951–954. [Google Scholar]
- Lu, X.B.; Zhang, H.J.; Ni, Y.W.; Zhang, Q.; Chen, J.P. Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosens. Bioelectron 2008, 24, 93–98. [Google Scholar]
- Xiang, C.; Zou, Y.; Sun, L.X.; Xu, F. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite. Sens. Actuat 2009, 136, 158–162. [Google Scholar]
- Ma, W.; Song, W.; Tian, D.B. ZnO-MWCNTs/Nafion inorganic-organic composite film: Preparation and application in bioelectrochemistry of hemoglobin. Chin. Chem. Lett 2009, 20, 358–361. [Google Scholar]
- Duan, G.P.; Li, Y.F.; Wen, Y.; Ma, X.L.; Wang, Y.; Ji, J.H.; Wu, P.; Zhang, Z.R.; Yang, H.F. Direct electrochemistry and electrocatalysis of hemoglobin/ZnO-chitosan/nano-au modified glassy carbon electrode. Electroanalysis 2008, 20, 2454–2459. [Google Scholar]
- Chen, X.; Dong, S.J. Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor. Biosens. Bioelectron 2003, 18, 999–1004. [Google Scholar]
- Kim, M.A.; Lee, W.Y. Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film. Anal. Chim. Acta. 2003, 479, 143–150. [Google Scholar]
- Wang, G.; Xu, J.J.; Chen, H.Y.; Lu, Z.H. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosens. Bioelectron 2003, 18, 335–343. [Google Scholar]
- Choi, H.N.; Kim, M.A.; Lee, W.Y. Amperometric glucose biosensor based on sol-gel-derived metal oxide/Nafion composite films. Anal. Chim. Acta. 2005, 537, 179–187. [Google Scholar]
- Albuquerque, Y.D.T.; Ferreira, L.F. Amperometric biosensor of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes. Anal. Chim. Acta. 2007, 596, 210–221. [Google Scholar]
- Chen, L.Y.; Gu, B.X.; Zhu, G.P.; Wu, Y.F.; Liu, S.Q.; Xu, C.X. Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod. J. Electroanal. Chem 2008, 617, 7–13. [Google Scholar]
- Gu, B.X.; Xu, C.X.; Zhu, G.P.; Liu, S.Q.; Chen, L.Y.; Li, X.S. Tyrosinase Immobilization on ZnO Nanorods for Phenol Detection. J. Phys. Chem. B 2009, 113, 377–381. [Google Scholar]
- Li, Y.F.; Liu, Z.M.; Liu, Y.L.; Yang, Y.H.; Shen, G.L.; Yu, R.Q. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal. Biochem 2006, 349, 33–40. [Google Scholar]
- Liu, Z.M.; Liu, Y.L.; Yang, H.F.; Yang, Y.; Shen, G.L.; Yu, R.Q. A mediator-free tyrosinase biosensor based on ZnO sol-gel matrix. Electroanalysis 2005, 17, 1065–1070. [Google Scholar]
- Zhao, J.W.; Wu, D.H.; Zhi, J.F. A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds. Bioelectrochemistry 2009, 75, 44–49. [Google Scholar]
- Myant, N.B. The Biology of Cholesterol and Related Steroids; Willium Heinemann: London, UK, 1981. [Google Scholar]
- Fredrickson, D.S.; Levy, R.I. The Metabolic Basis of Inherited Disease; Wyngarden, J.B., Fredrickson, D.D., Eds.; McGraw-Hill: New York, NY, USA, 1972; p. 545. [Google Scholar]
- Umar, A.; Rahman, M.M.; Vaseem, M.; Hahn, Y.B. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem. Commun 2009, 11, 118–121. [Google Scholar]
- Singh, S.P.; Arya, S.K.; Pandey, P.; Malhotra, B.D.; Saha, S.; Sreenivas, K.; Gupta, V. Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Appl. Phys. Lett 2007, 91, 063901. [Google Scholar]
- Umar, A.; Rahman, M.M.; Al-Hajry, A.; Hahn, Y.B. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta 2009, 78, 284–289. [Google Scholar]
- Khan, R.; Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Pandey, M.K.; Malhotra, B.D. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta 2008, 616, 207–213. [Google Scholar]
- Zhang, F.F.; Wang, X.L.; Ai, S.Y.; Sun, Z.D.; Wan, Q.; Zhu, Z.Q.; Xian, Y.Z.; Jin, L.T.; Yamamoto, K. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 2004, 519, 155–160. [Google Scholar]
- Bowers, L.D. Applications of immobilizated biocatalysts in chemical analysis. Anal. Chem 1986, 58, 513–530. [Google Scholar]
- Wang, J.; Liu, J.; Cepra, G. Thermal stabilization of enzymes immobilized within carbon paste electrodes. Anal. Chem 1997, 69, 3124–3127. [Google Scholar]
- Wang, Y.T.; Yu, L.; Zhu, Z.Q.; Zhang, J.; Zhu, J.Z. Novel uric acid sensor based on enzyme electrode modified by zno nanoparticles and multiwall carbon nanotubes. Anal. Lett 2009, 42, 775–789. [Google Scholar]
- Ansari, S.G.; Wahab, R.; Ansari, Z.A.; Kim, Y.S.; Khang, G.; Al-Hajry, A.; Shin, H.S. Effect of nanostructure on the urea sensing properties of sol-gel synthesized ZnO. Sens. Actuat 2009, 137, 566–573. [Google Scholar]
- Wu, B.Y.; Hou, S.H.; Yin, F.; Li, J.; Zhao, Z.X.; Huang, J.D.; Chen, Q. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens.Bioelectron 2007, 22, 838–844. [Google Scholar]
- Shirsat, M.D.; Too, C.O.; Wallace, G.G. Amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film. Electroanalysis 2008, 20, 150–156. [Google Scholar]
Ref. | [13] | [14] | [15] | [16] | [17] | [18] | [19] | [20] |
---|---|---|---|---|---|---|---|---|
Electrode | Gold | / | gold | gold | gold | GCE | Gold/Ti/PET | Ti |
Fabrication of ZnO | Vapor-phase transport | Vapor-liquid-solid | Thermal evaporation | Thermal evaporation | hydrothermal | Wet chemical route | Nanocluster-beam | Wet chemical route |
ZnO structure | nanocombs | nanowires | nanowires | nanonails | nanorods | nanoparticles | nanoparticles | carbon-decorated nanowires |
Immobilization mode | Physical adsorption | Physical adsorption | Physical adsorption | Physical adsorption | Physical adsorption | Physical adsorption | Cross-linking | Physical adsorption |
Working potential (V) | +0.8 | +0.8 | +0.8 | +0.8 | +0.8 | −0.5 | +0.8 | −0.45 |
Response time (s) | <10 | / | <10 | <10 | <5 | / | <8 | <5 |
KM (mM) | 2.19 | / | 2.1–11.8 | 15 | 2.9 | / | 21 | 1.54 |
Sensitivity (μA/ cm2·mM) | 15.33 | / | 26–0.8 | 24.6 | 23.1 | / | 13.3 | 35.3 |
Linear response range (mM) | 0.02–4.5 | 0.1–10 | / | 0.1–7.1 | 0.01–3.45 | 0.05–8.2 | 0–4 | 0.01–1.6 |
detection Limit (μM) | 20 | / | 0.7 | 5 | 10 | 10 | 20 | 1 |
Ref. | [27] | [20] | [28] | [29] | [30] | [31] | [32] | [23] | [33] |
---|---|---|---|---|---|---|---|---|---|
Enzyme/Electrode | HRP GCE | HRP Ti | MP graphite | HRP GCE | Hb GCE | HRP GCE | Hb GCE | HRP GCE | Hb GCE |
Fabrication of ZnO | Wet chemical | Wet chemical | commercial | commercial | Wet chemical | Wet chemical | Hydro-thermal | Hydro-thermal | Wet chemical |
ZnO structure | nanorods | nanowires | nanoparticles | nanoporous | nanosheet | flowerlike | Thin film | crystals | nanoparticles |
Immobilization mode | Chemical adsorption | Physical adsorption | Entrapped | Entrapped | Entrapped | Entrapped | Entrapped | Electrostatic attraction | Entrapped |
Working potential (V) | / | −0.4 | / | / | −0.675 | −0.3 | −0.39 | −0.2 | −0.28 |
Response time (s) | / | 4 | 1.5 | <10 | / | <5 | / | <10 | <4 |
KM (mM) | / | / | / | / | 0.143 | 1.76 | 0.0828 | / | 0.075 |
Sensitivity (μA/ cm2·mM) | / | 237.8 | 0.041 μA/ mM | 43.8 | 137 | / | 1310 | 369 | / |
Linear response range (μM) | 150–15000 | / | 0.1–800 | 5–2000 | 1–410 | 10–1100 | 0.2–12 | 1.5–450 | 0.19–1730 |
Detection Limit (μM) | 0.115 | 0.2 | 0.03 | 2.5 | 10 | 9 | 0.084 | 0.7 | 0.097 |
Ref. | [39] | [40] | [41] | [42] | [43] |
---|---|---|---|---|---|
Electrode | GCE | Treated gold sphere | GCE | GCE | Nanocrystalline diamond |
Fabrication of ZnO | Vapor-phase transport | Hydrothermal | Hydrothermal | Sol-gel | Chemical route |
ZnO structure | nanorods | nanorods | nanoparticles | ZnO sol-gel solution | ZnO nanorod microarray |
Immobilization mode | Electrostatic attraction | Electrostatic attraction | Electrostatic attraction | Electrostatic attraction | Covalent binding |
Working potential (V) | −0.2 | −0.2 | −0.2 | −0.2 | −0.15 |
Response time (s) | <5 | <5 | <10 | <15 | / |
KM (mM) | 0.24 | 0.17 × 10−3 | 23 × 10−3 | / | / |
Sensitivity (μA/mM) | 0.83 | 40 (<20μM) 103 (>20 μM) | 182 | 168 | 287 (μA/cm2·mM) |
Linear response range (μM) | 20–180 | two ranges | 0.15–65 | 0.15–40 | 1–150 |
Detection Limit (μM) | 15.57 | 0.623 | 0.05 | 0.08 | 0.25 |
Ref. | [47] | [46] | [48] | [49] |
---|---|---|---|---|
Electrode | Gold-coated ITO | Gold | Gold | ITO |
Fabrication of ZnO | Magnetron sputtering | Chemical route | Chemical route | Chemical route |
ZnO structure | Porous thin film | nanoparticles | Flowerlike ZnO (nanorods) | nanoparticles |
Immobilization mode | Physical adsorption | Physical adsorption | Physical adsorption | Physical adsorption |
Response time (s) | <15 | <5 | <5 | 15 |
KM (mM) | 2.1 | 4.7 | 2.57 | 0.22 |
Sensitivity (μA/cm2·mM) | / | 23.7 | 61.7 | 3.6 |
Linear response range (mM) | 0.65−10.34 | 1–500 × 10−3 | 1–15 × 10−3 | 0.13−7.77 |
detection Limit (μM) | / | 0.37 × 10−3 | 0.012 | 130 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhao, Z.; Lei, W.; Zhang, X.; Wang, B.; Jiang, H. ZnO-Based Amperometric Enzyme Biosensors. Sensors 2010, 10, 1216-1231. https://doi.org/10.3390/s100201216
Zhao Z, Lei W, Zhang X, Wang B, Jiang H. ZnO-Based Amperometric Enzyme Biosensors. Sensors. 2010; 10(2):1216-1231. https://doi.org/10.3390/s100201216
Chicago/Turabian StyleZhao, Zhiwei, Wei Lei, Xiaobing Zhang, Baoping Wang, and Helong Jiang. 2010. "ZnO-Based Amperometric Enzyme Biosensors" Sensors 10, no. 2: 1216-1231. https://doi.org/10.3390/s100201216
APA StyleZhao, Z., Lei, W., Zhang, X., Wang, B., & Jiang, H. (2010). ZnO-Based Amperometric Enzyme Biosensors. Sensors, 10(2), 1216-1231. https://doi.org/10.3390/s100201216