A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers
Abstract
:1. Introduction
2. Experimental Section
2.1. Measurement Equipment
Variable | Units | S-100 | S200 | NEXUS 1252 | MP200 | |
---|---|---|---|---|---|---|
200 ms | 1 s | |||||
V. L/N | V, KV | 0.1% | 0.1% | 0.1% | 0.05% | 0.3% |
V. L/L | V, KV | 0.1% | 0.2% | 0.1% | 0.05% | 0.5% |
Current | A, KA | 0.1% | 0.1% | 0.1% | 0.025% | 0.3% |
+/− watts | W | 0.2% | 0.2% | 0.1% | 0.06% | 0.5% |
+/− wh | Wh | 0.2% | 0.2% | N/A | 0.04% | 0.5% |
+/− VARs | VARs | 0.2% | 0.2% | 0.1% | 0.08% | 1.0% |
+/− VARh | VARh | 0.2% | 0.2% | N/A | 0.08% | 1.0% |
VA | VA | 0.2% | 0.2% | 0.1% | 0.1% | 1.0% |
VAh | VAh | 0.2% | 0.2% | N/A | 0.08% | 1.0% |
FP | +/−0.5 to 1 | 0.2% | 0.2% | 0.1% | 0.08% | 1.0% |
Frequency | Hertz | 1.10-2 | +/−3.10-2 | 3.10-2 | 1.10-2 | +/−1.10-2 |
2.2. Shark 100 (S-100)
2.3. Shark 200 (S-200)
Feature | Vs1 | Vs2 | Vs3 | Vs4 | Vs5 | Vs6 |
---|---|---|---|---|---|---|
Input/Output Expansion and Multifunction Measurement | √ | √ | √ | √ | √ | √ |
2 MB (Megabytes) datalogging (dl) | √ | √ | √ | |||
3 MB -dl | √ | |||||
4 MB -dl | √ | |||||
Harmonic Study | √ | √ | √ | √ | ||
TLC (transformers line compensation) and CT (Current transformers) / PT (Power Current) Compensation | √ | √ | √ | √ | √ | √ |
Functions for Control and Limits Configuration | √ | √ | √ | |||
64 SPC (samples per cycle) Waves Datalogger | √ | |||||
512 SPC Waves Datalogger | √ |
- •
- One port RS485 port allows communication using Distributed Network Protocol (DNP) v.3.0 or Modbus protocols.
- •
- KYZ Pulse—this device incorporates Pulse Outputs mapped to total energy.
- •
- Furthermore, it has an optical IrDA port with the same functions as the previously-explained model.
2.4. Nexus 1252
2.5. Shark MP200
2.6. Description of the Data
2.7. Harmonics and Harmonic Distortion
3. Methodology
3.1. Multivariate Adaptive Regression Splines (MARS)
3.2. The Proposed Algorithm AAA
Row # | v1 | v2 | v3 | v4 | v5 | v6 | v7 | v8 | v9 | v10 | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | X | X | X | X | X | X | X | X | X | X | Yes | yes | yes | yes | yes | yes | yes | yes |
2 | X | o | X | o | X | X | X | X | X | X | No | no | yes | no | no | yes | yes | no |
3 | X | X | X | X | o | X | X | X | X | X | No | no | no | yes | no | no | no | no |
4 | X | X | o | o | X | X | X | X | X | X | No | no | no | no | no | no | no | no |
5 | X | X | X | X | X | X | X | X | X | X | Yes | yes | yes | yes | yes | yes | yes | yes |
6 | X | o | X | X | X | X | X | X | X | X | No | no | yes | no | no | yes | yes | yes |
7 | o | X | X | X | X | X | X | X | X | X | No | yes | no | no | no | yes | no | no |
8 | X | X | X | X | X | X | X | X | X | X | Yes | yes | yes | yes | yes | yes | yes | yes |
9 | o | o | o | X | X | X | X | X | X | X | No | no | no | no | no | no | no | no |
10 | X | X | o | X | X | X | X | X | X | X | No | no | no | no | no | no | no | no |
11 | X | X | o | X | X | X | X | X | X | X | No | no | no | no | no | no | no | no |
12 | X | o | o | X | X | X | X | X | X | X | No | no | no | no | no | no | no | no |
13 | X | X | X | X | X | X | X | X | X | X | Yes | yes | yes | yes | yes | yes | yes | yes |
14 | o | o | X | X | X | X | X | X | X | X | No | no | no | no | no | yes | no | no |
15 | o | X | X | X | X | X | X | X | X | X | No | yes | no | no | no | yes | no | no |
16 | X | X | X | X | X | X | X | X | X | X | Yes | yes | yes | yes | yes | yes | yes | yes |
17 | o | o | o | o | o | o | X | X | X | X | No | no | no | no | no | no | no | no |
18 | X | X | X | X | X | X | X | X | X | X | Yes | yes | yes | yes | yes | yes | yes | yes |
19 | X | o | X | X | X | X | o | X | X | X | No | no | yes | no | no | no | no | yes |
20 | X | X | X | X | X | o | X | X | X | X | No | no | no | no | yes | no | no | no |
21 | X | o | o | X | o | X | X | X | X | X | No | no | no | no | no | no | no | no |
22 | X | X | X | X | X | X | X | X | X | X | Yes | yes | yes | yes | yes | yes | yes | yes |
23 | X | X | o | o | X | X | X | X | X | X | No | no | no | no | no | no | no | no |
24 | X | X | X | X | X | o | X | X | X | X | No | no | no | no | yes | no | no | no |
25 | X | X | o | X | X | X | X | X | o | X | No | no | no | no | no | no | no | no |
3.3. The Benchmark Rechnique: The MICE Algorithm
Algorithm 1. MICE algorithm for imputation of multivariate missing data [19]. |
|
3.4. Performance of the Algorithms
4. Results and Discussion
RMSE MICE 10% MISSING DATA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 19.6804 | 33.2038 | 20.8058 | 37.7042 | 39.6212 | 48.5060 | 0.2294 | 0.2501 | 1.8328 | 0.0031 |
2 | 17.5901 | 30.4712 | 22.9721 | 41.6324 | 28.1667 | 49.4147 | 0.3048 | 0.3419 | 1.7036 | 0.0032 |
3 | 17.7238 | 29.2717 | 22.8719 | 32.0352 | 37.9528 | 49.5132 | 0.2612 | 0.3322 | 1.8113 | 0.0030 |
4 | 16.1665 | 30.9164 | 20.1289 | 41.8040 | 28.4577 | 47.6496 | 0.2710 | 0.2344 | 1.8349 | 0.0033 |
5 | 18.8739 | 33.3065 | 20.9843 | 32.6096 | 40.9730 | 45.3324 | 0.2492 | 0.2768 | 1.6502 | 0.0031 |
Average | 18.0069 | 31.4339 | 21.5526 | 37.1571 | 35.0343 | 48.0832 | 0.2631 | 0.2871 | 1.7666 | 0.0032 |
RMSE NEW ALGORITHM 10% MISSING DATA | ||||||||||
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 1.5556 | 1.6047 | 0.9758 | 1.5621 | 2.1820 | 1.8054 | 0.1320 | 0.1446 | 0.1233 | 0.0020 |
2 | 1.1417 | 1.0847 | 1.0334 | 1.5623 | 2.0075 | 1.8990 | 0.1441 | 0.1397 | 0.1206 | 0.0020 |
3 | 1.0186 | 1.0077 | 0.8325 | 2.6758 | 1.6684 | 1.8550 | 0.1366 | 0.1458 | 0.1170 | 0.0020 |
4 | 1.0750 | 1.1247 | 1.1410 | 1.4569 | 1.7598 | 1.6958 | 0.1349 | 0.1558 | 0.1278 | 0.0017 |
5 | 1.1056 | 1.0992 | 0.9680 | 1.6783 | 1.9487 | 1.8209 | 0.1331 | 0.1317 | 0.1128 | 0.0021 |
Average | 1.1793 | 1.1842 | 0.9901 | 1.7871 | 1.9133 | 1.8152 | 0.1361 | 0.1435 | 0.1203 | 0.0020 |
RMSE MICE 15% MISSING DATA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 17.0837 | 28.8975 | 23.1269 | 38.2302 | 26.7259 | 45.7781 | 0.3816 | 0.2352 | 1.8578 | 0.0031 |
2 | 19.7831 | 31.6292 | 21.6406 | 44.4176 | 31.1867 | 50.5978 | 0.2733 | 0.4289 | 1.6515 | 0.0030 |
3 | 16.8887 | 32.1573 | 23.2565 | 34.8709 | 36.4404 | 49.8771 | 2.0080 | 0.3768 | 0.4198 | 0.0032 |
4 | 18.9432 | 30.8065 | 21.1655 | 43.2729 | 32.0558 | 43.2723 | 0.3458 | 0.3326 | 1.7407 | 0.0028 |
5 | 19.0647 | 30.0262 | 23.5861 | 32.4402 | 28.9609 | 44.9738 | 0.5376 | 0.2517 | 1.8402 | 0.0034 |
Average | 18.3527 | 30.7033 | 22.5551 | 38.6463 | 31.0739 | 46.8998 | 0.7092 | 0.3251 | 1.5020 | 0.0031 |
RMSE NEW ALGORITHM 15% MISSING DATA | ||||||||||
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 1.0916 | 1.0625 | 0.9937 | 1.6562 | 1.7851 | 1.7874 | 0.1355 | 0.1314 | 0.1184 | 0.0021 |
2 | 1.1417 | 1.0061 | 0.9990 | 1.6799 | 1.9229 | 1.7843 | 0.1285 | 0.1446 | 0.1235 | 0.0019 |
3 | 1.1178 | 1.1311 | 1.0816 | 1.7174 | 2.3560 | 1.7111 | 0.1345 | 0.1460 | 0.1249 | 0.0021 |
4 | 1.5109 | 1.0043 | 1.1689 | 1.5117 | 1.9786 | 1.8057 | 0.1250 | 0.1394 | 0.1262 | 0.0018 |
5 | 1.1151 | 1.0109 | 1.0351 | 1.6381 | 2.5543 | 1.8637 | 0.1290 | 0.1364 | 0.1324 | 0.0019 |
Average | 1.1954 | 1.0430 | 1.0556 | 1.6406 | 2.1194 | 1.7904 | 0.1305 | 0.1396 | 0.1250 | 0.0020 |
RMSE MICE 20% MISSING DATA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 16.5536 | 31.8986 | 22.5109 | 40.5584 | 32.8036 | 45.9128 | 0.2721 | 0.3250 | 1.8791 | 0.0032 |
2 | 18.5886 | 33.8541 | 23.3965 | 37.1860 | 28.7115 | 45.3711 | 1.9242 | 0.3857 | 0.4218 | 0.0031 |
3 | 18.0006 | 27.0257 | 22.4172 | 45.9451 | 29.7499 | 46.9085 | 0.4640 | 0.4657 | 1.8450 | 0.0031 |
4 | 18.4734 | 33.6455 | 22.6390 | 34.8455 | 42.4674 | 48.5727 | 0.2675 | 0.2951 | 1.6894 | 0.0032 |
5 | 19.0185 | 31.5739 | 22.9867 | 36.8936 | 30.8237 | 48.1872 | 0.2883 | 0.3618 | 1.8228 | 0.0029 |
Average | 18.1269 | 31.5996 | 22.7900 | 39.0857 | 32.9112 | 46.9905 | 0.6432 | 0.3667 | 1.5316 | 0.0031 |
RMSE NEW ALGORITHM 20% MISSING DATA | ||||||||||
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 1.0303 | 1.0031 | 1.0081 | 1.5567 | 1.7295 | 2.1989 | 0.1293 | 0.1535 | 0.1168 | 0.0018 |
2 | 1.3300 | 0.9645 | 1.4421 | 1.6901 | 1.9225 | 1.9970 | 0.1386 | 0.1430 | 0.1197 | 0.0019 |
3 | 1.4028 | 1.0751 | 1.0209 | 1.5444 | 1.6905 | 2.1216 | 0.1384 | 0.1462 | 0.1256 | 0.0018 |
4 | 1.1410 | 0.9442 | 0.9836 | 1.7262 | 1.8554 | 1.7554 | 0.1307 | 0.1391 | 0.1279 | 0.0019 |
5 | 1.0760 | 1.0285 | 1.0464 | 1.6981 | 1.8016 | 2.1696 | 0.1396 | 0.1351 | 0.1233 | 0.0019 |
Average | 1.1960 | 1.0031 | 1.1003 | 1.6431 | 1.7999 | 2.0485 | 0.1353 | 0.1434 | 0.1226 | 0.0019 |
MAE MICE 10% MISSING DATA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 15.3661 | 26.3015 | 16.4787 | 29.9178 | 30.6437 | 38.7431 | 0.1769 | 0.1910 | 1.3884 | 0.0026 |
2 | 13.4635 | 23.0373 | 19.0932 | 32.4891 | 23.0155 | 39.6558 | 0.2150 | 0.2234 | 1.2821 | 0.0026 |
3 | 13.9818 | 22.8360 | 18.2539 | 25.1375 | 29.5444 | 40.2728 | 0.2001 | 0.2107 | 1.3684 | 0.0024 |
4 | 12.9084 | 24.4469 | 16.2147 | 33.7170 | 22.3214 | 36.2061 | 0.2236 | 0.1892 | 1.3993 | 0.0026 |
5 | 14.9136 | 26.4011 | 16.7147 | 26.2535 | 32.1382 | 34.5887 | 0.1964 | 0.2052 | 1.2552 | 0.0025 |
Average | 14.1266 | 24.6045 | 17.3510 | 29.5030 | 27.5326 | 37.8933 | 0.2024 | 0.2039 | 1.3387 | 0.0025 |
MAE NEW ALGORITHM 10% MISSING DATA | ||||||||||
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 0.8954 | 0.8944 | 0.7444 | 1.1966 | 1.7099 | 1.4210 | 0.1053 | 0.1134 | 0.0971 | 0.0016 |
2 | 0.9017 | 0.8568 | 0.8358 | 1.2213 | 1.5561 | 1.5129 | 0.1120 | 0.1093 | 0.0960 | 0.0016 |
3 | 0.8236 | 0.7970 | 0.6533 | 1.4566 | 1.2741 | 1.4450 | 0.1123 | 0.1140 | 0.0881 | 0.0016 |
4 | 0.8617 | 0.8708 | 0.9240 | 1.1401 | 1.4034 | 1.3599 | 0.1045 | 0.1220 | 0.0975 | 0.0013 |
5 | 0.9135 | 0.8886 | 0.7926 | 1.3332 | 1.5911 | 1.4610 | 0.1057 | 0.1044 | 0.0920 | 0.0016 |
Average | 0.8792 | 0.8615 | 0.7900 | 1.2696 | 1.5069 | 1.4400 | 0.1080 | 0.1126 | 0.0941 | 0.0016 |
MAE MICE 15% MISSING DATA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 12.7819 | 21.9118 | 18.6842 | 30.7929 | 21.5323 | 35.7718 | 0.2421 | 0.1845 | 1.4006 | 0.0024 |
2 | 15.6837 | 24.3796 | 17.1327 | 34.6552 | 24.3977 | 40.5020 | 0.1959 | 0.2489 | 1.3048 | 0.0023 |
3 | 12.9838 | 25.1110 | 18.3944 | 28.7176 | 28.7719 | 38.0755 | 1.5148 | 0.2157 | 0.2240 | 0.0025 |
4 | 14.3735 | 23.8986 | 17.4651 | 34.6752 | 25.7770 | 33.3585 | 0.2164 | 0.2117 | 1.3023 | 0.0022 |
5 | 14.9162 | 23.6717 | 18.2033 | 25.8131 | 23.0634 | 35.0113 | 0.2675 | 0.1877 | 1.4250 | 0.0026 |
Average | 14.1478 | 23.7945 | 17.9759 | 30.9308 | 24.7084 | 36.5438 | 0.4873 | 0.2097 | 1.1314 | 0.0024 |
MAE NEW ALGORITHM 15% MISSING DATA | ||||||||||
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 0.8882 | 0.8196 | 0.7866 | 1.3280 | 1.4423 | 1.3884 | 0.1091 | 0.1053 | 0.0973 | 0.0017 |
2 | 0.9152 | 0.8158 | 0.7646 | 1.3088 | 1.4749 | 1.3937 | 0.1035 | 0.1117 | 0.0986 | 0.0016 |
3 | 0.8710 | 0.9064 | 0.8255 | 1.3577 | 1.5212 | 1.3480 | 0.1067 | 0.1121 | 0.0961 | 0.0016 |
4 | 0.9951 | 0.7757 | 0.9129 | 1.2065 | 1.5648 | 1.4341 | 0.1002 | 0.1114 | 0.0983 | 0.0014 |
5 | 0.8625 | 0.7992 | 0.7959 | 1.2726 | 1.7787 | 1.4867 | 0.1029 | 0.1043 | 0.1021 | 0.0015 |
Average | 0.9064 | 0.8234 | 0.8171 | 1.2947 | 1.5564 | 1.4102 | 0.1045 | 0.1089 | 0.0985 | 0.0015 |
MAE MICE 20% MISSING DATA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 12.6252 | 25.2004 | 18.4560 | 33.2591 | 25.8328 | 35.2414 | 0.2007 | 0.2133 | 1.4431 | 0.0025 |
2 | 15.0349 | 26.6725 | 18.2779 | 28.8681 | 22.4685 | 34.9493 | 1.4675 | 0.2465 | 0.2272 | 0.0024 |
3 | 14.1887 | 20.7764 | 18.1093 | 36.6143 | 23.2577 | 36.0519 | 0.2438 | 0.2499 | 1.4036 | 0.0025 |
4 | 14.1482 | 25.9181 | 18.7435 | 28.1440 | 33.7646 | 37.7483 | 0.1893 | 0.2033 | 1.2435 | 0.0025 |
5 | 14.7270 | 25.3376 | 18.5203 | 28.8294 | 24.8967 | 38.1530 | 0.1971 | 0.2105 | 1.3253 | 0.0023 |
Average | 14.1448 | 24.7810 | 18.4214 | 31.1430 | 26.0441 | 36.4288 | 0.4597 | 0.2247 | 1.1285 | 0.0024 |
MAE NEW ALGORITHM 20% MISSING DATA | ||||||||||
Iteration | Van | Vbn | Vcn | Vab | Vbc | Vca | Ia | Ib | Ic | PF |
1 | 0.7814 | 0.8120 | 0.8039 | 1.2398 | 1.3721 | 1.4579 | 0.1012 | 0.1155 | 0.0926 | 0.0014 |
2 | 0.8745 | 0.7664 | 0.8475 | 1.3372 | 1.5238 | 1.5322 | 0.1096 | 0.1105 | 0.0950 | 0.0015 |
3 | 0.9177 | 0.8772 | 0.8167 | 1.2134 | 1.3097 | 1.4525 | 0.1083 | 0.1145 | 0.0971 | 0.0014 |
4 | 0.8624 | 0.7406 | 0.7719 | 1.3691 | 1.4522 | 1.3876 | 0.1046 | 0.1086 | 0.1028 | 0.0015 |
5 | 0.8350 | 0.8022 | 0.8032 | 1.3666 | 1.3894 | 1.4925 | 0.1096 | 0.1062 | 0.0967 | 0.0015 |
Average | 0.8542 | 0.7997 | 0.8086 | 1.3052 | 1.4094 | 1.4646 | 0.1067 | 0.1110 | 0.0969 | 0.0015 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chattopadhyay, S.; Mitra, M.; Sengupta, S. Electric Power Quality. In Electric Power Quality; Springer: Dordrecht, The Netherlands, 2011; pp. 5–12. [Google Scholar]
- Dixit, J.B.; Yadav, A. Electrical Power Quality; University Science Press: New Delhi, India, 2010. [Google Scholar]
- Stones, J.; Collinson, A. Power quality. Power Eng. J. 2001, 15, 58–64. [Google Scholar] [CrossRef]
- Ferreira, D.D.; de Seixas, J.M.; Cerqueira, A.S.; Duque, C.A.; Bollen, M.H.J.; Ribeiro, P.F. A new power quality deviation index based on principal curves. Electr. Power Syst. Res. 2015. [Google Scholar] [CrossRef]
- Mahela, O.P.; Shaik, A.G.; Gupta, N. A critical review of detection and classification of power quality events. Renew. Sustain. Energy Rev. 2015. [Google Scholar] [CrossRef]
- Granados-Lieberman, D.; Valtierra-Rodriguez, M.; Morales-Hernandez, L.; Romero-Troncoso, R.; Osornio-Rios, R. A Hilbert Transform-Based Smart Sensor for Detection, Classification, and Quantification of Power Quality Disturbances. Sensors 2013, 13, 5507–5527. [Google Scholar] [CrossRef] [PubMed]
- Granados-Lieberman, D.; Romero-Troncoso, R.J.; Cabal-Yepez, E.; Osornio-Rios, R.A.; Franco-Gasca, L.A. A Real-Time Smart Sensor for High-Resolution Frequency Estimation in Power Systems. Sensors 2009, 9, 7412–7429. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Kim, H.-M.; Kang, S. A design of wireless sensor networks for a power quality monitoring system. Sensors 2010, 10, 9712–9725. [Google Scholar] [CrossRef] [PubMed]
- Turrado, C.; López, M.; Lasheras, F.; Gómez, B.; Rollé, J.; Juez, F. Missing Data Imputation of Solar Radiation Data under Different Atmospheric Conditions. Sensors 2014, 14, 20382–20389. [Google Scholar] [CrossRef] [PubMed]
- www.electroind.com. Available online: http://www.electroind.com/products/ (accessed on 8 December 2015).
- Kammler, D.W. A First Course in Fourier Analysis; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- García Nieto, P.J.; Martínez Torres, J.; de Cos Juez, F.J.; Sánchez Lasheras, F. Using multivariate adaptive regression splines and multilayer perceptron networks to evaluate paper manufactured using Eucalyptus globulus. Appl. Math. Comput. 2012, 219, 755–763. [Google Scholar] [CrossRef]
- Guzmán, D.; Juez, F.J.C.; Myers, R.; Guesalaga, A.; Lasheras, F.S. Modeling a MEMS deformable mirror using non-parametric estimation techniques. Opt. Expr. 2010, 18, 21356–21369. [Google Scholar] [CrossRef] [PubMed]
- García Nieto, P.J.; Alonso Fernández, J.R.; Sánchez Lasheras, F.; de Cos Juez, F.J.; Díaz Muñiz, C. A new improved study of cyanotoxins presence from experimental cyanobacteria concentrations in the Trasona reservoir (Northern Spain) using the MARS technique. Sci. Total Environ. 2012, 430, 88–92. [Google Scholar] [CrossRef] [PubMed]
- De Cos Juez, F.J.; Lasheras, F.S.; García Nieto, P.J.; Suarez, M.A.S. A new data mining methodology applied to the modelling of the influence of diet and lifestyle on the value of bone mineral density in post-menopausal women. Int. J. Comput. Math. 2009, 86, 1878–1887. [Google Scholar] [CrossRef]
- Machon-Gonzalez, I.; Lopez-Garcia, H.; Calvo-Rolle, J.L. A hybrid batch SOM-NG algorithm. In Proceedings of the 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 18–23 July 2010.
- De Andrés, J.; Lorca, P.; de Cos Juez, F.J.; Sánchez-Lasheras, F. Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Syst. Appl. 2011, 38, 1866–1875. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 1, 1–67. [Google Scholar] [CrossRef]
- Roberts, G.O. Markov chain concepts related to sampling algorithms. In Markov Chain Monte Carlo in Practice; Gilks, W.R., Richardson, S., Spiegelhalter, D.J., Eds.; Chapman and Hall: London, UK, 1996; pp. 45–47. [Google Scholar]
- Tierney, L. Introduction to general state-space Markov chain theory. In Markov Chain Monte Carlo in Practice; Gilks, W.R., Richardson, S., Spiegelhalter, D.J., Eds.; Chapman and Hall: London, UK, 1996; pp. 59–71. [Google Scholar]
- Van Buuren, S. Flexible Imputation of Missing Data; Chapman & Hall/CRC Press: London, UK, 2012. [Google Scholar]
- Liu, Y.; Brown, S.D. Comparison of five iterative imputation methods for multivariate classification. Chemom. Intell. Lab. Syst. 2013, 120, 106–115. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error ( RMSE ) or mean absolute error (MAE)? —Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Álvarez Antón, J.C.; García Nieto, P.J.; de Cos Juez, F.J.; Sánchez Lasheras, F.; González Vega, M.; Roqueñí Gutiérrez, M.N. Battery state-of-charge estimator using the SVM technique. Appl. Math. Model. 2013, 37, 6244–6253. [Google Scholar] [CrossRef]
- García Nieto, P.J.; Alonso Fernández, J.R.; de Cos Juez, F.J.; Sánchez Lasheras, F.; Díaz Muñiz, C. Hybrid modelling based on support vector regression with genetic algorithms in forecasting the cyanotoxins presence in the Trasona reservoir (Northern Spain). Environ. Res. 2013, 122, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Quintian, H.; Calvo-Rolle, J.L.; Corchado, E. A hybrid regression system based on local models for solar energy prediction. Informatica 2014, 25, 265–282. [Google Scholar] [CrossRef]
- Manuel Vilar-Martinez, X.; Montero-Sousa, J.A.; Calvo-Rolle, J.L.; Casteleiro-Roca, J.L. Expert system development to assist on the verification of “TACAN” system performance. Dyna 2014, 89, 112–121. (In Spanish) [Google Scholar]
- Viveros, R.A.; Yuz, J.I.; Perez-Ibacache, R.R. Simultaneous State and Parameter Estimation for a Nonlinear Time-Varying System. Rev. Iberoam. Autom. Inform. Ind. 2014, 11, 263–274. [Google Scholar] [CrossRef]
- Farias, G.; Dormido-Canto, S.; Vega, J.; Santos, M.; Pastor, I.; Fingerhuth, S.; Ascencio, J. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering. Fusion Eng. Des. 2014, 89, 761–765. [Google Scholar] [CrossRef]
- Smaragdis, P.; Raj, B.; Shashanka, M. Missing Data Imputation for Time-Frequency Representations of Audio Signals. J. Signal Process. Syst. 2011, 65, 361–370. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo Turrado, C.; Sánchez Lasheras, F.; Calvo-Rollé, J.L.; Piñón-Pazos, A.J.; De Cos Juez, F.J. A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers. Sensors 2015, 15, 31069-31082. https://doi.org/10.3390/s151229842
Crespo Turrado C, Sánchez Lasheras F, Calvo-Rollé JL, Piñón-Pazos AJ, De Cos Juez FJ. A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers. Sensors. 2015; 15(12):31069-31082. https://doi.org/10.3390/s151229842
Chicago/Turabian StyleCrespo Turrado, Concepción, Fernando Sánchez Lasheras, José Luis Calvo-Rollé, Andrés José Piñón-Pazos, and Francisco Javier De Cos Juez. 2015. "A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers" Sensors 15, no. 12: 31069-31082. https://doi.org/10.3390/s151229842
APA StyleCrespo Turrado, C., Sánchez Lasheras, F., Calvo-Rollé, J. L., Piñón-Pazos, A. J., & De Cos Juez, F. J. (2015). A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers. Sensors, 15(12), 31069-31082. https://doi.org/10.3390/s151229842