Optimization of Capacitive Acoustic Resonant Sensor Using Numerical Simulation and Design of Experiment
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Equations Governing the Membrane Displacement
2.2. Pressure Sensitivity
2.3. Resonance Frequency
Mode Number | Factor |
---|---|
1 | k10 = 2.4048 |
2 | k11 = 3.8317 |
3 | k11 = 3.8317 |
4 | k12 = 5.1356 |
5 | k12 = 5.1356 |
6 | k20 = 5.5201 |
2.4. Quality Factor
3. Numerical Simulation
3.1. Finite Element Model (FEM)
Parameter | Value | Unit |
---|---|---|
Bulk viscosity () | 10 × 10−6 | Pa·s |
Gas constant () | 281.4 | J/(kg·K) |
Density of Membrane () | 1390 | kg/m3 |
Young’s modulus of membrane () | 4 × 109 | Pa |
Poisson’s ratio of membrane () | 0.38 | - |
3.2. Selection of Parameters and Responses
4. Experimental Design
Factors | Code | Range |
---|---|---|
Membrane Radius () | 4–10 mm | |
Bottom Electrode Radius () | 0.25–3 mm | |
Cavity Height () | 1000–4000 μm | |
Air gap () | 3–80 μm | |
Membrane Tension () | 100–3000 N/m | |
Film Thickness () | 8–25 μm |
N°Exp | Rm | Rb | hc | hg | Tm | tm | N°Exp | Rm | Rb | hc | hg | Tm | tm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mm | mm | µm | µm | N/m | µm | mm | mm | µm | µm | N/m | µm | ||
1 | 4 | 0.25 | 1000 | 3 | 3000 | 8 | 32 | 10 | 3 | 4000 | 80 | 100 | 25 |
2 | 10 | 0.25 | 1000 | 3 | 100 | 8 | 33 | 10 | 0.25 | 1000 | 3 | 3000 | 25 |
3 | 4 | 3 | 1000 | 3 | 100 | 8 | 34 | 4 | 3 | 1000 | 3 | 3000 | 25 |
4 | 10 | 3 | 1000 | 3 | 3000 | 8 | 35 | 4 | 0.25 | 4000 | 3 | 3000 | 25 |
5 | 4 | 0.25 | 4000 | 3 | 100 | 8 | 36 | 10 | 3 | 4000 | 3 | 3000 | 25 |
6 | 10 | 0.25 | 4000 | 3 | 3000 | 8 | 37 | 4 | 0.25 | 1000 | 80 | 3000 | 25 |
7 | 4 | 3 | 4000 | 3 | 3000 | 8 | 38 | 10 | 3 | 1000 | 80 | 3000 | 25 |
8 | 10 | 3 | 4000 | 3 | 100 | 8 | 39 | 10 | 0.25 | 4000 | 80 | 3000 | 25 |
9 | 4 | 0.25 | 1000 | 80 | 100 | 8 | 40 | 4 | 3 | 4000 | 80 | 3000 | 25 |
10 | 10 | 0.25 | 1000 | 80 | 3000 | 8 | 41 | 10 | 1.625 | 2500 | 41.5 | 1550 | 16.5 |
11 | 4 | 3 | 1000 | 80 | 3000 | 8 | 42 | 7 | 0.25 | 2500 | 41.5 | 1550 | 16.5 |
12 | 10 | 3 | 1000 | 80 | 100 | 8 | 43 | 7 | 1.625 | 1000 | 41.5 | 1550 | 16.5 |
13 | 4 | 0.25 | 4000 | 80 | 3000 | 8 | 44 | 7 | 1.625 | 2500 | 3 | 1550 | 16.5 |
14 | 10 | 0.25 | 4000 | 80 | 100 | 8 | 45 | 7 | 1.625 | 2500 | 41.5 | 100 | 16.5 |
15 | 4 | 3 | 4000 | 80 | 100 | 8 | 46 | 7 | 1.625 | 2500 | 41.5 | 3000 | 16.5 |
16 | 10 | 3 | 4000 | 80 | 3000 | 8 | 47 | 5.9 | 1.322 | 2266 | 36.9 | 1407 | 15.8 |
17 | 4 | 1.625 | 2500 | 41.5 | 1550 | 8 | 48 | 8.1 | 1.322 | 2266 | 36.9 | 1407 | 15.8 |
18 | 10 | 1.625 | 2500 | 41.5 | 1550 | 8 | 49 | 7 | 2.231 | 2266 | 36.9 | 1407 | 15.8 |
19 | 7 | 0.25 | 2500 | 41.5 | 1550 | 8 | 50 | 7 | 1.625 | 3202 | 36.9 | 1407 | 15.8 |
20 | 7 | 3 | 2500 | 41.5 | 1550 | 8 | 51 | 7 | 1.625 | 2500 | 60.1 | 1407 | 15.8 |
21 | 7 | 1.625 | 1000 | 41.5 | 1550 | 8 | 52 | 7 | 1.625 | 2500 | 41.5 | 2265 | 15.8 |
22 | 7 | 1.625 | 4000 | 41.5 | 1550 | 8 | 53 | 7 | 1.625 | 2500 | 41.5 | 1550 | 20.8 |
23 | 7 | 1.625 | 2500 | 3 | 1550 | 8 | 54 | 4 | 0.5 | 1000 | 80 | 100 | 8 |
24 | 7 | 1.625 | 2500 | 80 | 1550 | 8 | 55 | 4 | 0.5 | 4000 | 80 | 3000 | 8 |
25 | 4 | 0.25 | 1000 | 3 | 100 | 25 | 56 | 10 | 0.5 | 4000 | 80 | 100 | 8 |
26 | 10 | 3 | 1000 | 3 | 100 | 25 | 57 | 7 | 0.5 | 2500 | 41.5 | 1550 | 8 |
27 | 10 | 0.25 | 4000 | 3 | 100 | 25 | 58 | 7 | 0.5 | 2500 | 80 | 1550 | 8 |
28 | 4 | 3 | 4000 | 3 | 100 | 25 | 59 | 4 | 0.5 | 4000 | 80 | 100 | 25 |
29 | 10 | 0.25 | 1000 | 80 | 100 | 25 | 60 | 4 | 0.5 | 1000 | 80 | 3000 | 25 |
30 | 4 | 3 | 1000 | 80 | 100 | 25 | 61 | 10 | 0.5 | 4000 | 80 | 3000 | 25 |
31 | 4 | 0.25 | 4000 | 80 | 100 | 25 | 62 | 7 | 0.5 | 2500 | 60.1 | 1407 | 15.8 |
5. Result and Discussion
5.1. Empirical Model Building and Analysis
Model | Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | Ratio | Sig. |
---|---|---|---|---|---|---|
YC0 = Log(C0) | Regression | 42.2128 | 27 | 1.5634 | 6205.1558 | <0.01 |
Residuals | 0.0076 | 30 | 0.0003 | |||
Total | 42.2204 | 57 | ||||
R-Squared (R2) | 1 | |||||
Adj. R-Squared (Ra2) | 1 | |||||
Y|˂ξSe˃|fr1 = Log(|˂ξSe˃|fr1) | Regression | 99.2762 | 27 | 3.6769 | 112.9190 | <0.01 |
Residuals | 1.0094 | 31 | 0.0326 | |||
Total | 100.2856 | 58 | ||||
R-Squared (R2) | 0.990 | |||||
Adj. R-Squared (Ra2) | 0.981 | |||||
YQf = Log(Qf) | Regression | 37.0305 | 27 | 1.3715 | 20.3269 | <0.01 |
Residuals | 2.0242 | 30 | 0.0675 | |||
Total | 39.0546 | 57 | ||||
R-Squared (R2) | 0.948 | |||||
Adj. R-Squared (Ra2) | 0.902 | |||||
Y∆C = Log(∆C) | Regression | 24.8283 | 27 | 0.9196 | 14.0307 | <0.01 |
Residuals | 2.0317 | 31 | 0.0655 | |||
Total | 26.8600 | 58 | ||||
R-Squared (R2) | 0.924 | |||||
Adj. R-Squared (Ra2) | 0.858 | |||||
Y|˂ξSe˃|fr2 = Log(|˂ξSe˃|fr2) | Regression | 43.6303 | 27 | 1.6159 | 18.1856 | <0.01 |
Residuals | 2.7546 | 31 | 0.0889 | |||
Total | 46.3849 | 58 | ||||
R-Squared (R2) | 0.941 | |||||
Adj. R-Squared (Ra2) | 0.889 |
5.2. Optimization Process
Response (unit) | Partial Desirability Code | Functions | Weight (wi) | a | b | Predicted Response | Partial Desirability |
---|---|---|---|---|---|---|---|
C0 (pF) | d1 | Bilateral | 1 | 0.5 | 3.2 | 0.5 | 100% |
Qf | d2 | Maximization | 1 | 25 | 1450 | 210 | 52.4% |
∆C (fF) | d3 | Maximization | 1 | 1 | 36 | 1.72 | 15.1% |
|˂ξSe˃|fr2(nm) | d4 | Minimization | 1 | 0.03 | 3 | 1.12 | 21.3% |
Factor | Value |
---|---|
Membrane radius () | 8.1 mm |
Backplate radius () | 0.871 mm |
Cavity height () | 3987 µm |
Air gap () | 80.0 µm |
Membrane tension () | 2158 N/m |
Membrane thickness () | 19.8 µm |
5.3. Verification
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martin, D.T. Design, Fabrication, and Characterization of a MEMS Dual-backplate Capacitive Microphone. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2007. [Google Scholar]
- Chatzopoulos, D. Modeling the Performance of MEMS Based Directional Microphones. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2008. [Google Scholar]
- Kaushik, B.; Nance, D.; Ahuja, K.K. A Review of the Role of Acoustic Sensors in the Modern Battlefield. In Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA, USA, 23–25 May 2005.
- Scheeper, P.R.; van der Donk, A.G.H.; Olthuis, W.; Bergveld, P. A Review of Silicon Microphones. Sens. Actuators A Phys. 1994, 44, 1–11. [Google Scholar]
- Hsu, P.-C.; Mastrangelo, C.H.; Wise, K.D. A High Sensitivity Polysilicon Diaphragm Condenser Microphone. In Proceedings of the 11th Annual International Workshop on Micro Electro Mechanical Systems Proceeding, Heidelberg, Germany, 25–29 January 1998; pp. 580–585.
- Hohm, D.; Hess, G. A Subminiature Condenser Microphone with Silicon Nitride Membrane and Silicon Back Plate. J. Acoust. Soc. Am. 1989, 85, 476–480. [Google Scholar]
- Shu, Z.-Z.; Ke, M.-L.; Chen, G.-W.; Horng, R.-H.; Chang, C.-C.; Tsai, J.-Y.; Lai, C.-C.; Chen, J.-L. Design and Fabrication of Condenser Microphone Using Wafer Transfer and Micro-Electroplating Technique. In Proceedings of the Design, Test, Integration and Packaging of MEMS/MOEMS, Nice, France, 9–11 April 2008; pp. 386–390.
- Zou, Q.; Li, Z.; Liu, L. Design and Fabrication of Silicon Condenser Microphone Using Corrugated Diaphragm Technique. J. Microelectromech. Syst. 1996, 5, 197–204. [Google Scholar]
- Honzík, P.; Podkovskiy, A.; Durand, S.; Joly, N.; Bruneau, M. Analytical and Numerical Modeling of an Axisymmetrical Electrostatic Transducer with Interior Geometrical Discontinuity. J. Acoust. Soc. Am. 2013, 134, 3573–3579. [Google Scholar]
- Podkovskiy, A.; Honzík, P.; Durand, S.; Joly, N.; Bruneau, M. Miniaturized Electrostatic Receiver with Small-Sized Backing Electrode. In Proceedings of Meetings on Acoustics, Montreal, QC, Canada, 2–7 June 2013; Volume 19.
- Lewis, G.A.; Mathieu, D.; Phan-Tan-Luu, R. Pharmaceutical Experimental Design; Dekker: New York, NY, USA, 1999. [Google Scholar]
- Vogel, F.; Landes, H.; Lerch, R.; Kaltenbacher, M.; Peipp, R. Numerical Simulation and Optimization of Capacitive Transducers. In Proceedings of EuroSime, Aix-en-Provence, France, 30 March–2 April 2003; pp. 399–405.
- Gill, P.E.; Wong, E. Sequential Quadratic Programming Methods. In Mixed Integer Nonlinear Programing; Lee, J., Leyffer, S., Eds.; Springer: New York, NY, USA, 2012; Volume 154, pp. 147–224. [Google Scholar]
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar]
- Sarabia, L.A.; Ortiz, M.C. Response Surface Methodology. In Comprehensive Chemometrics; Steven, B., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2009; Volume 1, pp. 345–390. [Google Scholar]
- Lavergne, T.; Durand, S.; Bruneau, M.; Joly, N. Dynamic Behaviour of the Circular Membrane of an Electrostatic Microphone: Effect of Holes in the Backing Electrode. J. Acoust. Soc. Am. 2010, 128, 3459–3477. [Google Scholar]
- Bruneau, M.; Bruneau, A.-M.; Škvor, Z.; Lotton, P. An Equivalent Network Modelling the Strong Coupling Between a Vibrating Membrane and a Fluid Film. Acta Acust. 1994, 2, 223–232. [Google Scholar]
- Bower, A.F. Applied Mechanics of Solids; CRC Press: New York, NY, USA, 2010. [Google Scholar]
- Morse, P.M.; Uno Ingard, K. Theoretical Acoustics; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Merhaut, J. A Contribution to the Theory of Electroacoustic Transducers Based on Electrostatic Principle. Acustica 1967, 19, 283–292. [Google Scholar]
- Baker, W.P.; Kriegsmann, G.A.; Reiss, E.L. Acoustic Scattering by Baffled Cavity-Backed Membranes. J. Acoust. Soc. Am. 1988, 83, 423–432. [Google Scholar]
- Prak, A.; Blom, F.R.; Elwenspoek, M.; Lammering, T.S.J. Q-Factor and Frequency Shift of Resonating Silicon Diaphragms in Air. Sens. Actuators A Phys. 1991, 25–27, 691–698. [Google Scholar]
- Ren, S.; Yuan, W.; Qiao, D.; Deng, J.; Sun, X. A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure. Sensors 2013, 13, 17006–17024. [Google Scholar]
- Park, K.K.; Lee, H.J.; Crisman, P.; Kupnik, M.; Oralkan, O.; Khuri-Yakub, B.T. Optimum design of circular CMUT membranes for high quality factor in air. In Proceddings of the Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 504–507.
- Rautela, G.S.; Snee, R.D.; Miller, W.K. Response-Surface Co-optimization of Reaction Conditions in Clinical Chemical Methods. Clin. Chem. 1979, 25, 1954–1964. [Google Scholar]
- Telford, J.K. A Brief Introduction to Design of Experiments. Johns Hopkins APL Tech. Dig. 2007, 27, 224–232. [Google Scholar]
- Bahloul, R.; Mkaddem, A.; Dal Santo, P.; Potiron, A. Sheet Metal Bending Optimisation using Response Surface Method, Numerical Simulation and Design of Experiments. Int. J. Mech. Sci. 2006, 48, 991–1003. [Google Scholar]
- Stehouwer, P. Design of Experiments for Numerical Parameter Studies of Electronic Systems: Optimizing the Cooling Strategy of an Ethernet Switch. Electronics Cooling Magazine, May 2005. [Google Scholar]
- Gou, J.; Zhang, C.; Liang, Z.; Wang, B.; Simpson, J. Resin Transfer Molding Process Optimization Using Numerical Simulation and Design of Experiments Approach. Polym. Compos. 2003, 24, 1–12. [Google Scholar]
- Rosales, E.; Sanromán, M.A.; Pazos, M. Application of Central Compostie Face-Centered Design and Response Surface Methodology for the Optimization of Electro-Fenton Decolorization of Azure B Dye. Environ. Sci. Pollut. Res. 2012, 19, 1738–1746. [Google Scholar]
- LPRAI. nemrodW. Available online: http://www.lprai.com/index.php?page=Logiciel (accessed on 27 December 2014).
- Montgomery, D.C.; Runger, G.C. Multiple Linear Regression. In Applied Statistics and Probability for Engineers, 4th ed.; John Wiley & Sons: New York, NY, USA, 2007; pp. 410–467. [Google Scholar]
- Montgomery, D.C.; Runger, G.C. Design and Analysis for Single-Factor Experiments: The Analysis of Variance. In Applied Statistics and Probability for Engineers, 4th ed.; John Wiley & Sons: New York, NY, USA, 2007; pp. 468–504. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, R.I.; Loussert, C.; Sergent, M.; Benaben, P.; Boddaert, X. Optimization of Capacitive Acoustic Resonant Sensor Using Numerical Simulation and Design of Experiment. Sensors 2015, 15, 8945-8967. https://doi.org/10.3390/s150408945
Haque RI, Loussert C, Sergent M, Benaben P, Boddaert X. Optimization of Capacitive Acoustic Resonant Sensor Using Numerical Simulation and Design of Experiment. Sensors. 2015; 15(4):8945-8967. https://doi.org/10.3390/s150408945
Chicago/Turabian StyleHaque, Rubaiyet Iftekharul, Christophe Loussert, Michelle Sergent, Patrick Benaben, and Xavier Boddaert. 2015. "Optimization of Capacitive Acoustic Resonant Sensor Using Numerical Simulation and Design of Experiment" Sensors 15, no. 4: 8945-8967. https://doi.org/10.3390/s150408945
APA StyleHaque, R. I., Loussert, C., Sergent, M., Benaben, P., & Boddaert, X. (2015). Optimization of Capacitive Acoustic Resonant Sensor Using Numerical Simulation and Design of Experiment. Sensors, 15(4), 8945-8967. https://doi.org/10.3390/s150408945