In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor
Abstract
:1. Introduction
2. Sensing Principle and Design of Five-in-One Micro-Sensor
2.1. Sensing Principle of Five-in-One Micro-Sensor
2.1.1. Micro Temperature Sensor
2.1.2. Micro Voltage Sensor
2.1.3. Micro Pressure Sensor
2.1.4. Micro Flow Sensor
2.1.5. Micro Current Sensor
2.1.6. Finished Product of Five-in-One Micro-Sensor
2.1.7. Sensor Calibration
3. Test Result of Constant Current (5, 13, 20 A) Output
3.1. Local Temperature and Voltage Distributions in Different Cells
- Figure 9 compares the internal and external voltages. The voltage curve is smooth at a constant current (5, 13 A), because the electrochemical reaction is uniform. At a high current (20 A), the internal electrochemical reaction is violent, and the voltage distribution is nonuniform. The internal local voltage is measured using a micro voltage sensor. The curve of the variation of the internal voltage is consistent with that of the external voltage.
- Figure 10 plots the local temperature and voltage in different cells. The temperature increases gradually with the current (5, 13, 20 A), because a higher operating current causes more heat to be released from the electrochemical reaction, and as the current increases to a high value (20 A), the thermal nonuniformity becomes gradually worse. Cell 5 has the highest temperature, perhaps because Cell 5 is located in the center of the HT-PEMFC stack. The gases on both ends transfer heat from the front end of the stack to the tail end. The internal electrochemical reaction is vigorous at a high current (20 A), and heat is concentrated, causing Cell 5 to be the hottest.
3.2. Local Pressure Distribution in Different Cells
3.3. Local Flow Distribution in Different Cells
3.4. Local Current Distribution in Different Cells
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bureau of Energy. Ministry of Economic Affairs. Available online: http://web3.moeaboe.gov.tw/ecw/populace/content/SubMenu.aspx?menu_id=2324 (accessed on 4 May 2014).
- Tan, Z.; Zhang, C.; Liu, P.; Reed, B.; Zhao, J. Focus on fuel cell systems in China. Renew. Sustain. Energy Rev. 2015, 47, 912–923. [Google Scholar]
- Weng, F.B.; Jou, B.S.; Su, A.; Chan, S.H.; Chi, P.H. Design, fabrication and performance analysis of a 200 W PEM fuel cell short stack. J. Power Sources 2007, 171, 179–185. [Google Scholar] [CrossRef]
- Janssen, H.; Supra, J.; Lueke, L.; Lehnert, W.; Stolten, D. Development of HT-PEFC stacks in the kW range. Int. J. Hydrogen Energy 2013, 38, 4705–4713. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z.; Zhang, J.; Tang, Y.; Song, C.; Navessin, T.; Shi, Z.; Song, D.; Wang, H.; Wilkinson, D.P.; et al. High temperature PEM fuel cells. J. Power Sources 2006, 160, 872–891. [Google Scholar] [CrossRef]
- Li, Q.; Jensen, J.O.; Savinell, R.F.; Bjerruma, N.J. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 2009, 34, 449–477. [Google Scholar] [CrossRef] [Green Version]
- Chandan, A.; Hattenberger, M.; El-Kharouf, A.; Du, S.F.; Dhir, A.; Self, V.; Pollet, B.G.; Ingram, A.; Bujalski, W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—A review. J. Power Sources 2013, 231, 264–278. [Google Scholar] [CrossRef]
- Harms, C.; Köhrmann, F.; Dyck, A. Study of the influence of key test parameters on the performance of a PEMFC stack. Solid State Ionics 2015, 275, 75–79. [Google Scholar] [CrossRef]
- Lee, C.Y.; Weng, F.B.; Cheng, C.H.; Shiu, H.R.; Jung, S.P.; Chang, W.C.; Chan, P.C.; Chen, W.T.; Lee, C.J. Use of flexible micro-temperature sensor to determine temperature in situ and to simulate a proton exchange membrane fuel cell. J. Power Sources 2011, 196, 228–234. [Google Scholar] [CrossRef]
- Weng, F.B.; Cheng, C.K.; Lee, C.Y.; Chang, C.P. Analysis of thermal balance in high-temperature proton exchange membrane fuel cells with short stacks via in situ monitoring with a flexible micro sensor. Int. J. Hydrogen Energy 2014, 39, 13681–13686. [Google Scholar] [CrossRef]
- Lee, C.Y.; Weng, F.B.; Huang, Y.P.; Chang, C.P.; Cheng, C.K. Real-time monitoring of internal temperature and voltage of high-temperature fuel cell stack. Electrochim. Acta 2015, 161, 413–419. [Google Scholar] [CrossRef]
- Bose, S.; Kuila, T.; Nguyen, T.X. H.; Kim, N.H.; Lau, K.T.; Lee, J.H. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog. Polym. Sci. 2011, 36, 813–843. [Google Scholar] [CrossRef]
Subject | Condition |
---|---|
Temperature of the stack (°C) | 160 |
Cathode flow rate (Air) (slpm) | 30 |
Anode flow rate (H2) (slpm) | 5 |
Constant current (A) | 5, 13, 20 |
Gas temperature | Room temperature |
Reaction area (cm2) | 31.4 |
Subject | Specificationsis |
---|---|
HT-MEA | Advent energy |
Membrane thickness | 60~65 μm |
Conductivity | 8 × 10−2 S/cm |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Weng, F.-B.; Kuo, Y.-W.; Tsai, C.-H.; Cheng, Y.-T.; Cheng, C.-K.; Lin, J.-T. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor. Sensors 2016, 16, 1731. https://doi.org/10.3390/s16101731
Lee C-Y, Weng F-B, Kuo Y-W, Tsai C-H, Cheng Y-T, Cheng C-K, Lin J-T. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor. Sensors. 2016; 16(10):1731. https://doi.org/10.3390/s16101731
Chicago/Turabian StyleLee, Chi-Yuan, Fang-Bor Weng, Yzu-Wei Kuo, Chao-Hsuan Tsai, Yen-Ting Cheng, Chih-Kai Cheng, and Jyun-Ting Lin. 2016. "In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor" Sensors 16, no. 10: 1731. https://doi.org/10.3390/s16101731
APA StyleLee, C. -Y., Weng, F. -B., Kuo, Y. -W., Tsai, C. -H., Cheng, Y. -T., Cheng, C. -K., & Lin, J. -T. (2016). In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor. Sensors, 16(10), 1731. https://doi.org/10.3390/s16101731