Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Micro-Spectrometer and Sensing System Electronics
2.1.1. Micro-Spectrometer Design
2.1.2. Sensing Electronics Design
2.1.3. 3D Printing Fabrication and Assembly
2.2. Fluorescence Dopamine Sensing Probe
2.2.1. Materials
2.2.2. Design and Fabrication
3. Experiments and Results
3.1. Characterization of Optical Sensing Probes
3.2. Characterization of the Optical Dopamine Sensor
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Goto, Y.; Otani, S.; Grace, A.A. The Yin and Yang of Dopamine Release, a New Perspective. Neuropharmacology 2007, 53, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Keefe, K.A.; Zigmond, M.J.; Abercrombie, E.D. In vivo regulation of extracellular dopamine in the neostriatum: Influence of impulse activity and local excitatory amino acids. J. Neural Transm. Gen. Sect. 1993, 91, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Floresco, S.B.; West, A.R.; Ash, B.; Moore, H.; Grace, A.A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 2003, 6, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Futami, T.; Takakusaki, K.; Kitai, S.T. Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci. Res. 1995, 21, 331–342. [Google Scholar] [CrossRef]
- Smith, I.D.; Grace, A.A. Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 1992, 12, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Daws, L.C.; Toney, G.M. High-Speed Chronoamperometry to study kinetics and mechanisms for serotonin clearance in vivo. In Electrochemical Methods for Neuroscience; Michael, A.C., Borland, L.M., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
- Kishida, K.T.; Sandberg, S.G.; Lohrenz, T.; Comair, Y.G.; Sáez, I.; Phillips, P.E.M.; Montague, P.R. Sub-Second Dopamine Detection in Human Striatum. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Pothos, E.N.; Davila, V.; Sulzer, D. Presynaptic Recording of Quanta from Midbrain Dopamine Neurons and Modulation of the Quantal Size. J. Neurosci. 1998, 18, 4106–4118. [Google Scholar] [PubMed]
- Jackowska, K.; Krysinski, P. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 2013, 405, 3753–3771. [Google Scholar] [CrossRef] [PubMed]
- Ankireddy, S.R.; Kim, J. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots. Int. J. Nanomed. 2015, 10, 113–119. [Google Scholar]
- Ismail, W.Z.W.; Liu, G.; Zhang, K.; Goldys, E.M.; Dawes, J.M. Dopamine sensing and measurement using threshold and spectral measurements in random lasers. Opt. Express 2016, 25, A85–A91. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, N.; Pandikumar, A.; Ramaraj, R.; Lim, H.N.; Huang, N.M. Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchimica Acta 2015, 182, 2091–2114. [Google Scholar] [CrossRef]
- Yildirim, A.; Bayindir, M. Turn-on Fluorescent Dopamine Sensing Based on In Situ Formation of Visible Light Emitting Polydopamine Nanoparticles. Anal. Chem. 2014, 86, 5508–5512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, D.R.; Prasanth, S.; Vineeshkumar, T.V.; Sudarsanakumar, C. Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles. Sens. Actuators B Chem. 2016, 224, 600–606. [Google Scholar]
- Zhou, X.; Ma, P.; Wang, A.; Yu, C.; Qian, T.; Wu, S.; Shen, J. Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosens. Bioelectron. 2015, 64, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.J.; Jun, J.H.; Swamy, K.M.K.; Nakamura, K.; Koh, H.S.; Yoon, Y.J.; Yoon, J. Fluorescence Sensing of Dopamine. Bull. Korean Chem. Soc. 2005, 26, 2041. [Google Scholar] [CrossRef]
- Mu, Q.; Xu, H.; Li, Y.; Ma, S.; Zhong, X. Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst 2014, 139, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Baruah, U.; Gogoi, N.; Konwar, A.; Deka, M.J.; Chowdhury, D.; Majumdar, G. Carbon Dot Based Sensing of Dopamine and Ascorbic Acid. J. Nanopart. 2014, 2014. [Google Scholar] [CrossRef]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 2002, 14, R597–R624. [Google Scholar] [CrossRef]
- An, J.H.; Choi, D.; Lee, K.; Choi, J. Surface-enhanced Raman spectroscopy detection of dopamine by DNA targeting amplification assay in Parkisons’s model. Biosens. Bioelectron. 2015, 67, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xia, M.; Liang, O.; Sun, K.; Cipriano, A.F.; Schroeder, T.; Liu, H.; Xie, Y. Label-Free SERS Selective Detection of Dopamine and Serotonin Using Graphene-Au Nanopyramid Heterostructure. Anal. Chem. 2015, 87, 10255–10261. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ma, L.; Zhang, X.; Liang, A. SERS Detection of Dopamine Using Label-Free Acridine Red as Molecular Probe in Reduced Graphene Oxide/Silver Nanotriangle Sol Substrate. Nanoscale Res. Lett. 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Li, X.; Kang, S.; Mu, J. Gold nanoparticles conjugated dopamine as sensing platform for SERS detection. Colloids Surf. B 2015, 126, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Huo, H.; Wang, W.; Tian, Y.; Wu, N.; Guthy, C.; Shen, M.; Wang, X. Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser. Sensors 2010, 10, 11064–11071. [Google Scholar] [CrossRef] [PubMed]
- Volkan, M.; Stokes, D.L.; Vo-Dinh, T. Surface-Enhanced Raman of Dopamine and Neurotransmitters Using Sol-Gel Substrates and Polymer-Coated Fiber-Optic Probes. Appl. Spectrosc. 2000, 54, 1842–1848. [Google Scholar] [CrossRef]
- Yin, M.; Borton, D.A.; Komar, J.; Agha, N.; Lu, Y.; Li, H.; Laurens, J.; Lang, Y.; Li, Q.; Bull, C.; et al. Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior. Neuron 2014, 84, 1170–1182. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.K. Deep brain stimulation: Current and future clinical applications. Mayo Clin. Proc. 2011, 86, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Song, K.D.; Yoon, H.; Park, Y.; Choi, S.H.; Lee, D.; Shin, K.; Hwang, H.; Lee, U. Probe-pin device for optical neurotransmitter sensing in the brain. In Proceedings of the SPIE 2015 Nanosensors, Biosensors, and Info-Tech Sensors and Systems, San Diego, CA, USA, 8 March 2015.
- Choi, S.H.; Kim, M.H.; Song, K.D.; Yoon, H.; Lee, U. A wirelessly powered microspectrometer for neural probe-pin device. In Proceedings of the SPIE 2015 Micro + Nano Materials, Devices, and Systems, Sydney, Australia, 6 December 2015.
- Park, Y.; Choi, S.H.; King, G.C.; Elliott, J.R. Micro Spectrometer for Parallel Light and Method of Use. U.S. Patent 8,059,273 B2, 15 November 2011. [Google Scholar]
- Lo, S.; Lin, E.; Wei, P.; Tsai, W. A Portable Grating-Based Spectrometer for Plasmonic Biosensing Applications. In Proceedings of the 2015 Conference on Lasers and Electro-Optics Pacific Rim (Optical Society of America, 2015), Busan, Korea, 24–28 August 2015.
- Wang, Y.; Liu, X.; Chen, P.; Tran, N.T.; Zhang, J.; Chia, W.S.; Boujday, S.; Liedberg, B. Smartphone spectrometer for colorimetric biosensing. Analyst 2016, 141, 3233–3238. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; King, G.C.; Elliott, J.R.; Choi, S.H. Micro Ring Grating Spectrometer with Adjustable Aperture. U.S. Patent 8,094,306, 10 January 2012. [Google Scholar]
- Park, Y.; Choi, S.H. Miniaturization of Optical Spectrometers into Fresnel Micro Spectrometer. J. Nanophotonics 2013, 7, 077599. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, H.J.; Song, E.; Song, K.D.; Lee, U.; Sanford, L.D.; Choi, S.H. A hat-type wireless power transmission for a nano-neural sensing system. Smart Nanosyst. Eng. Med. 2012, 1, 88–93. [Google Scholar]
- Han, M.Y.; Gao, X.H.; Su, J.Z.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 2001, 19, 631. [Google Scholar] [CrossRef] [PubMed]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.E.; Russo-Menna, I. Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 1998, 82, 1213–1223. [Google Scholar] [CrossRef]
- Milby, K.; Oke, A.; Adams, R.N. Detailed mapping of ascorbate distribution in rat brain. Neurosci. Lett. 1982, 28, 169–174. [Google Scholar] [CrossRef]
- Tashkhourian, J.; Dehbozorgi, A. Determination of dopamine in the presence of ascorbic and uric acids by fluorometric method using graphene quantum dots. Spectrosc. Lett. 2016, 49, 319–325. [Google Scholar] [CrossRef]
- Hardman, R. A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environ. Health Perspect. 2006, 114, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, K.M.; Dai, Q.; Alman, B.A.; Chan, W.C. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 2013, 46, 662–671. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.H.; Yoon, H.; Choi, S.H.; Zhao, F.; Kim, J.; Song, K.D.; Lee, U. Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain. Sensors 2016, 16, 1894. https://doi.org/10.3390/s16111894
Kim MH, Yoon H, Choi SH, Zhao F, Kim J, Song KD, Lee U. Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain. Sensors. 2016; 16(11):1894. https://doi.org/10.3390/s16111894
Chicago/Turabian StyleKim, Min H., Hargsoon Yoon, Sang H. Choi, Fei Zhao, Jongsung Kim, Kyo D. Song, and Uhn Lee. 2016. "Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain" Sensors 16, no. 11: 1894. https://doi.org/10.3390/s16111894
APA StyleKim, M. H., Yoon, H., Choi, S. H., Zhao, F., Kim, J., Song, K. D., & Lee, U. (2016). Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain. Sensors, 16(11), 1894. https://doi.org/10.3390/s16111894