Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate
Abstract
:1. Introduction
2. Experimental
2.1. Device Design and Configuration
2.2. Fabrication and Results
3. Results and Discussions
3.1. Device Characterization
3.2. In Vitro Experiment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Laxton, A.W.; Tang-Wai, D.F.; Mcandrews, M.P.; Zumsteg, D.; Wennberg, R.; Keren, R.; Wherrett, J.; Naglie, G.; Hamani, C.; Smith, G.S.; et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann. Neurol. 2010, 68, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.; Zimmermann, J.B. Neural interfaces for the brain and spinal cord-restoring motor function. Nat. Rev. Neurol. 2012, 8, 690–699. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.E.; Greferath, U.; Vessey, K.A.; Jobling, A.I.; Fletcher, E.L. Electronic restoration of vision in those with photoreceptor degenerations. Clin. Exp. Optim. 2012, 95, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.I.; Lee, S.M.; Yee, J.H.; Ryu, S.B.; Kim, K.H.; Goo, Y.S.; Cho, D.I. A novel in vitro sensing configuration for retinal physiology analysis of a sub-retinal prosthesis. Sensors 2012, 12, 3131–3144. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.I.; Lee, S.M.; Bae, S.H.; Seo, J.M.; Chung, H.; Cho, D.I. Arrowhead-shaped microelectrodes fabricated on a flexible substrate for enhancing the spherical conformity of retinal prostheses. J. Microelectromech. Syst. 2011, 20, 251–259. [Google Scholar] [CrossRef]
- Seo, J.M.; Kim, K.H.; Goo, Y.S.; Park, K.S.; Kim, S.J.; Cho, D.I.; Chung, H. Vision rehabilitation by electrical retinal stimulation: Review of microelectrode approaches. Sens. Mater. 2012, 24, 153–164. [Google Scholar]
- Lee, S.M.; Ahn, J.H.; Seo, S.M.; Chung, H.; Cho, D.I. Electrical characterization of 3D Au microelectrodes for use in retinal prostheses. Sensors 2015, 15, 14345–14355. [Google Scholar] [CrossRef] [PubMed]
- Hirase, H.; Nikolenko, V.; Goldberg, J.H.; Yuste, R. Multiphoton stimulation of neurons. J. Neurobiol. 2002, 51, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Zemelman, B.V.; Lee, G.A.; Ng, M.; Miesenböck, G. Selective photostimulation of genetically ChARGed neurons. Neuron 2002, 33, 15–22. [Google Scholar] [CrossRef]
- Oh, S.J.; Ahn, J.H.; Lee, S.M.; Ko, H.H.; Seo, J.M.; Goo, Y.S.; Cho, D.I. Light-controlled biphasic current stimulator IC using CMOS image sensors for high-resolution retinal prosthesis and in vitro experimental results with rd1 mouse. IEEE Trans. Biomed. 2015, 62, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Wilke, R.; Gabel, V.P.; Sachs, H.; Schmidt, K.U.B.; Gekeler, F.; Besch, D.; Szurman, P.; Stett, A.; Wilhelm, B.; Peters, T.; et al. Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5995–6003. [Google Scholar] [CrossRef] [PubMed]
- Fujikado, T.; Kamei, M.; Sakaguchi, H.; Kanda, H.; Morimoto, T.; Ikuno, Y.; Nishida, K.; Kishima, H.; Maruo, T.; Konoma, K.; et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4726–4733. [Google Scholar] [CrossRef] [PubMed]
- Klauke, S.; Goertz, M.; Rein, S.; Hoehl, D.; Thomas, U.; Eckhorn, R.; Bremmer, F.; Wachtler, T. Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Investig. Ophthalmol. Vis. Sci. 2011, 52, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Humayun, M.S.; Dorn, J.D.; da Cruz, L.; Gagnelle, G.; Sahel, J.A.; Stanga, P.E.; Cideciyan, A.V.; Duncan, J.L.; Eliott, D.; Filley, E.; et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 2012, 119, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Zrenner, E.; Bartz-Schmidt, K.U.; Benav, H.; Besch, D.; Bruckmann, A.; Gabel, V.P.; Gekeler, F.; Greppmaier, U.; Harscher, A.; Kibbel, S.; et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. Biol. Sci. 2011, 278, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Palanker, D.; Vankov, A.; Huie, P.; Baccus, S. Design of a high-resolution optoelectronic retinal prosthesis. J. Neural Eng. 2005, 2, S105–S120. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, P.J.; Yarbrough, G.L.; Yee, C.W.; McLean, G.Y.; Sagdullaev, B.T.; Ball, S.L.; McCall, M.A. Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. Investig. Ophthalmol. Vis. Sci. 2007, 48, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.Y.; Bittner, A.K. The artificial silicon retina in retinitis pigmentosa aatients (An American Ophthalmological Association Thesis). Trans. Am. Ophthalmol. Soc. 2010, 108, 120–154. [Google Scholar] [PubMed]
- Lee, S.M.; Jung, S.W.; Ahn, J.H.; Yoo, H.J.; Oh, S.J.; Cho, D.I. Microelectrode array with integrated nanowire FET switches for high-resolution retinal prosthetic systems. J. Microelectromech. Syst. 2014, 24, 075018. [Google Scholar] [CrossRef]
- Ahn, J.H.; Lee, S.M.; Hong, S.J.; Yoo, H.J.; Jung, S.W.; Park, S.K.; Ko, H.H.; Cho, D.I. Multi-channel stimulator IC using a channel sharing method for retinal prosthesis. J. Biomed. Nanotechnol. 2013, 9, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Che, J.H.; Seo, J.M.; Jeong, J.; Kim, E.T.; Lee, S.W.; Koo, K.I.; Suaing, G.J.; Lovell, N.H.; Cho, D.I.; et al. In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2653–2657. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Jung, S.W.; Park, S.K.; Ahn, J.H.; Hong, S.J.; Yoo, H.J.; Lee, M.H.; Cho, D.I. Fabrication and evaluation of silicon nanowire photodetectors on a flexible substrate for retinal prosthetic system. Sens. Mater. 2012, 24, 205–220. [Google Scholar]
- Lee, K.N.; Jung, S.W.; Shin, K.S.; Kim, W.H.; Lee, M.H.; Seong, W.K. Fabrication of suspended silicon nanowire arrays. Small 2008, 4, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Pi, K.; Shin, J.Y.; Jung, S.W.; Lee, S.; Cho, D.I. Electrical characterization of nanostructured 3D microelectrodes for retinal neuron stimulation. In Proceedings of the 2015 IEEE Sensors, Busan, Korea, 1–4 November 2015.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.W.; Shin, J.Y.; Pi, K.; Goo, Y.S.; Cho, D.-i.“. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate. Sensors 2016, 16, 2035. https://doi.org/10.3390/s16122035
Jung SW, Shin JY, Pi K, Goo YS, Cho D-i“. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate. Sensors. 2016; 16(12):2035. https://doi.org/10.3390/s16122035
Chicago/Turabian StyleJung, Suk Won, Jong Yoon Shin, Kilwha Pi, Yong Sook Goo, and Dong-il “Dan” Cho. 2016. "Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate" Sensors 16, no. 12: 2035. https://doi.org/10.3390/s16122035
APA StyleJung, S. W., Shin, J. Y., Pi, K., Goo, Y. S., & Cho, D. -i. “. (2016). Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate. Sensors, 16(12), 2035. https://doi.org/10.3390/s16122035