Development of a Calibration Strip for Immunochromatographic Assay Detection Systems
Abstract
:1. Introduction
2. Quantitative Detection System
2.1. Principle of Quantitative Detection
2.2. Photoelectric Detection System
3. Methodology
3.1. Image Acquisition and Processing
3.1.1. Structure of Test Strip
3.1.2. Image Acquisition Device
3.1.3. Image Processing
3.2. Development and Verification of the Calibration Strip
4. Experimental Results and Discussion
4.1. Experiment of Test Line Extraction
4.2. Development of the Calibration Strip
4.3. Verification of the Calibration Strip
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cho, Y.-J.; Lee, D.-H.; Kim, D.-O.; Min, W.-K.; Bong, K.-T.; Lee, G.-G.; Seo, J.-H. Production of a monoclonal antibody against ochratoxin A and its application to immunochromatographic assay. J. Agric. Food Chem. 2005, 53, 8447–8451. [Google Scholar] [CrossRef] [PubMed]
- Shyu, R.-H.; Shyu, H.-F.; Liu, H.-W.; Tang, S.-S. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon 2002, 40, 255–258. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, X.; Tang, J.; Gu, X.; Zhou, J.; Chu, F.S. Development of an immunochromatographic assay for detection of aflatoxin B1 in foods. Food Control 2006, 17, 256–262. [Google Scholar]
- Yang, W.; Li, X.-B.; Liu, G.-W.; Zhang, B.-B.; Zhang, Y.; Kong, T.; Tang, J.-J.; Li, D.-N.; Wang, Z. A colloidal gold probe-based silver enhancement immunochromatographic assay for the rapid detection of abrin-a. Biosens. Bioelectron. 2011, 26, 3710–3713. [Google Scholar] [CrossRef] [PubMed]
- Chiao, D.-J.; Shyu, R.-H.; Hu, C.-S.; Chiang, H.-Y.; Tang, S.-S. Colloidal gold-based immunochromatographic assay for detection of botulinum neurotoxin type B. J. Chromatogr. B 2004, 809, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.; Yang, Z.; Kim, J.; Kim, J.; Kang, S.; Woo, G.; Chung, Y.; Eremin, S.A.; Chung, D. Development of immunochromatography strip-test using nanocolloidal gold-antibody probe for the rapid detection of aflatoxin B1 in grain and feed samples. J. Microbiol. Biotechnol. 2007, 17, 1629. [Google Scholar] [PubMed]
- Shim, W.-B.; Yang, Z.-Y.; Kim, J.-Y.; Choi, J.-G.; Je, J.-H.; Kang, S.-J.; Kolosova, A.Y.; Eremin, S.A.; Chung, D.-H. Immunochromatography using colloidal gold-antibody probe for the detection of atrazine in water samples. J. Agric. Food Chem. 2006, 54, 9728–9734. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Pan, F.-G.; Li, Y.-S.; Zhang, Y.-Y.; Zhang, J.-H.; Lu, S.-Y.; Ren, H.-L.; Liu, Z.-S. Colloidal gold probe-based immunochromatographic assay for the rapid detection of brevetoxins in fishery product samples. Biosens. Bioelectron. 2009, 24, 2744–2747. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-R.; Liu, S.-Y.; Gui, W.-J.; Zhu, G.-N. Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal. Biochem. 2009, 389, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Hao, H.-J.; Xiong, G.-H.; Geng, H.-R.; Zheng, Y.-L.; Wang, J.; Cao, Y.; Yang, Y.-H.; Cai, X.-H.; Jiang, Y.-Q. Development of colloidal gold-based immunochromatographic assay for rapid detection of Streptococcus suis serotype 2. Vet. Immunol. Immunopathol. 2010, 133, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, C.K.; Kamle, S.; Sinha, R.P.; Bhatnagar, R.K.; Kachru, D.N. Development of nanocolloidal gold based immunochromatographic assay for rapid detection of transgenic vegetative insecticidal protein in genetically modified crops. Food Chem. 2010, 122, 1298–1303. [Google Scholar] [CrossRef]
- Meng, K.; Sun, W.; Zhao, P.; Zhang, L.; Cai, D.; Cheng, Z.; Guo, H.; Liu, J.; Yang, D.; Wang, S. Development of colloidal gold-based immunochromatographic assay for rapid detection of Mycoplasma suis in porcine plasma. Biosens. Bioelectron. 2014, 55, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Shyu, R.-H.; Tang, S.-S.; Chiao, D.-J.; Hung, Y.-W. Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem. 2010, 118, 462–466. [Google Scholar]
- Sheng, W.; Li, Y.; Xu, X.; Yuan, M.; Wang, S. Enzyme-linked immunosorbent assay and colloidal gold-based immunochromatographic assay for several (fluoro) quinolones in milk. Microchim. Acta 2011, 173, 307–316. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Zhao, Z.-Q.; Shen, P.-L.; Lin, Y.-C. Optimization of an Optical Inspection System Based on the Taguchi Method for Quantitative Analysis of Point-of-Care Testing. Sensors 2014, 14, 16148–16158. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Yang, Y.; Zhang, J.; Ge, S.; Tang, Z.; Qiu, X. Point-of-care test for C-reactive protein by a fluorescence-based lateral flow immunoassay. Instrum. Sci. Technol. 2014, 42, 635–645. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, L.; Zhao, Y.; Wang, J.; Huang, L.; Hu, K.; Liu, H.; Wang, H.; Guo, Z.; Song, Y. Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sens. Actuators B Chem. 2006, 119, 656–663. [Google Scholar] [CrossRef]
- Vieira, G.P.; Perdigão, S.R.; Fiore, M.F.; Reis, B.F. Development of a high sensitive automatic setup for screening of microcystins in surface waters by employing a LED-based photometric detector. Sens. Actuators B Chem. 2012, 161, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Phung, S.L.; Bouzerdoum, A.; Chai, D. Skin segmentation using color pixel classification: Analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Sural, S.; Qian, G.; Pramanik, S. Segmentation and histogram generation using the HSV color space for image retrieval. In Proceedings of the 2002 IEEE International Conference on Image Processing, Rochester, NY, USA, 22–25 September 2002; Volume 2, pp. II-589–II-592.
- Akbari, H.; Kalkhoran, H.M.; Fatemizadeh, E. A robust FCM algorithm for image segmentation based on spatial information and Total Variation. In Proceedings of the 9th IEEE Iranian Conference on Machine Vision and Image Processing (MVIP), Teheran, Iran, 17–19 November 2015; pp. 180–184.
- Lan, T.; Xiao, Z.; Hu, C.; Ding, Y.; Qin, Z. MRI brain image segmentation based on Kerneled FCM algorithm and using image filtering method. In Proceedings of the 2014 IEEE International Conference on Audio, Language and Image Processing (ICALIP), Shanghai, China, 7–9 July 2014; pp. 511–515.
- Song, X.; Li, G.; Luo, L. Optimizing FCM for segmentation of image using Gbest-guided artificial bee colony algorithm. In Proceedings of the 2015 11th IEEE International Conference on Natural Computation (ICNC), Hunan, China, 15–17 August 2015; pp. 764–768.
- Tang, D.-Y.; Yang, J.; Huang, Y.-S. Double weighted FCM algorithm for color image segmentation. In Proceedings of the 2012 IEEE International Conference on Machine Learning and Cybernetics (ICMLC), Xi’an, China, 15–17 July 2012; pp. 1135–1138.
- Wang, P.; Wang, H. A modified FCM algorithm for MRI brain image segmentation. In Proceedings of the 2008 IEEE International Seminar on Future BioMedical Information Engineering (FBIE’08), Wuhan, China, 18 December 2008; pp. 26–29.
- Dimitriadou, E.; Barth, M.; Windischberger, C.; Hornik, K.; Moser, E. A quantitative comparison of functional MRI cluster analysis. Artif. Intell. Med. 2004, 31, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Jarmasz, M.; Somorjai, R.L. Exploring regions of interest with cluster analysis (EROICA) using a spectral peak statistic for selecting and testing the significance of fMRI activation time-series. Artif. Intell. Med. 2002, 25, 45–67. [Google Scholar] [CrossRef]
- Pizzi, N.J.; Vivanco, R.A.; Somorjai, R.L. EvIdent™: A functional magnetic resonance image analysis system. Artif. Intell. Med. 2001, 21, 263–269. [Google Scholar] [CrossRef]
- Somorjai, R.L. Exploratory data analysis in functional neuroimaging. Artif. Intell. Med. 2002, 25, 1–3. [Google Scholar] [CrossRef]
- Cheng, B.; Zhuo, L.; Zhang, J. Comparative Study on Dimensionality Reduction in Large-Scale Image Retrieval. In Proceedings of the 2013 IEEE International Symposium on Multimedia (ISM), Anaheim, CA, USA, 9–11 December 2013; pp. 445–450.
- Lei, L.; Wang, X.; Yang, B.; Peng, J. Image dimensionality reduction based on the HSV feature. In Proceedings of the 2010 9th IEEE International Conference on Cognitive Informatics (ICCI), Beijing, China, 7–9 July 2010; pp. 127–131.
Step 1: Set clustering number c and fuzzy exponent m; initialize center of clustering V(°); set convergence accuracy and iteration times k. |
Step 2: Calculate V(°) according to Equation (13). |
Step 3: Let k = k + 1, calculate V(k + 1) according to Equation (10). |
Step 4: Repeat Steps 2 and 3 until inequality (14) is satisfied. |
Step 1: Assuming the dataset X is composed of n vectors, i.e., ; aibitrarily select one vector (x1) from the dataset as the first clustering v1, e.g., v1 = x1. |
Step 2: Calculate the distances between v1 and all other points in the set, find the point with the largest distance and set as v2. |
Step 3: Calculate the distances between the remaining vectors of X and the known clustering centers, and choose the minimum distances as a group. Then, select the maximum distance in this group. If the maximum is larger than the given threshold , this point will be set as a new clustering center. Generally, . |
Step 4: Repeat Step 3 until the acquired maximum distance does not satisfy the condition of creating a new center or the value of the clustering center reaches the desired number. |
Time (min) | 10 | 12 | 14 | 16 | 18 | |
---|---|---|---|---|---|---|
CQ | ||||||
95.15 | 95.04 | 95.24 | 94.61 | 94.22 | ||
79.58 | 84.70 | 88.34 | 89.45 | 91.35 | ||
84.57 | 87.54 | 90.21 | 90.01 | 91.88 | ||
79.84 | 84.81 | 88.41 | 89.50 | 90.82 |
Time (min) | 10 | 12 | 14 | 16 | 18 | |
---|---|---|---|---|---|---|
CQ | ||||||
98.02 | 98.31 | 98.12 | 98.11 | 97.93 | ||
81.33 | 87.87 | 90.91 | 92.18 | 93.11 | ||
86.77 | 90.92 | 93.02 | 93.90 | 94.85 | ||
81.64 | 88.02 | 91.03 | 92.27 | 93.56 |
OD | H |
---|---|
1.5 | 277.657 |
3 | 292.886 |
4 | 303.039 |
5 | 313.192 |
6 | 323.345 |
7 | 333.498 |
8 | 343.651 |
9 | 353.804 |
9.5 | 358.881 |
OD | SR |
---|---|
1.50 | 94.83 |
2.64 | 77.49 |
4.14 | 67.05 |
5.07 | 53.87 |
5.93 | 50.21 |
6.43 | 45.06 |
7.93 | 33.02 |
8.93 | 18.05 |
9.87 | 15.09 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.-M.; Wei, J.-C.; Mak, P.-U.; Vai, M.-I.; Du, M.; Pun, S.-H. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems. Sensors 2016, 16, 1007. https://doi.org/10.3390/s16071007
Gao Y-M, Wei J-C, Mak P-U, Vai M-I, Du M, Pun S-H. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems. Sensors. 2016; 16(7):1007. https://doi.org/10.3390/s16071007
Chicago/Turabian StyleGao, Yue-Ming, Jian-Chong Wei, Peng-Un Mak, Mang-I. Vai, Min Du, and Sio-Hang Pun. 2016. "Development of a Calibration Strip for Immunochromatographic Assay Detection Systems" Sensors 16, no. 7: 1007. https://doi.org/10.3390/s16071007
APA StyleGao, Y. -M., Wei, J. -C., Mak, P. -U., Vai, M. -I., Du, M., & Pun, S. -H. (2016). Development of a Calibration Strip for Immunochromatographic Assay Detection Systems. Sensors, 16(7), 1007. https://doi.org/10.3390/s16071007