An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud
Abstract
:1. Introduction
- Physical sensors perform sensing and forward sensing data to the sensor-cloud.
- The sensor-cloud virtualizes sensor nodes as virtual sensors and provides sensing-as-a-service to users and applications.
- Applications/users buy sensing services on demand from the sensor-cloud.
- We propose an efficient interactive model for the sensor-cloud, which enables the sensor-cloud to provide on-demand sensing services to multiple applications at the same time.
- We design an efficient request aggregation scheme on the sensor-cloud to minimize the number of requests sent to physical sensor nodes and an efficient request-based adaptive low power listening protocol for physical sensor nodes to optimize sensors’ energy consumption.
- Through our comprehensive experimental studies, we show that the proposed system achieves a significant improvement in terms of the energy consumption of sensor nodes, the bandwidth consumption of sensing traffic, the packet delivery latency, reliability and scalability, compared to the state-of-the-art approaches.
2. Related Work
3. The Proposed Interactive Model
3.1. Sensor-Cloud Modeling
3.2. An Efficient Interactive Model for the Sensor-Cloud (C2S)
3.3. Application Request Aggregation Scheme
3.3.1. The Request Aggregator
Algorithm 1 Application request aggregation procedure. |
INPUT: |
OUTPUT: updating-flag, new if updating-flag = 1 |
Initialize: updating-flag = 0, |
Repeat |
x = aggregation( |
if then |
; |
updating-flag = 1 |
return updating-flag; |
end if |
return updating-flag; |
UNTIL there is no new application request |
3.3.2. The Aggregation Function
4. A Sensing Update Request-Based Adaptive Low Power Listening Protocol
4.1. Adaptive LPL Triggering Event
4.2. Active Mode
4.3. Lazy Mode
4.4. Revisiting LPL Operations
4.5. Motivations for the Sensing Update Request-Based Adaptive LPL Protocol
4.6. Theoretical Framework for the Sensing Update Request-Based Adaptive LPL Protocol
4.6.1. Energy Consumption at the Receiver Side
4.6.2. Energy Consumption at Senders
4.6.3. Expected Energy Consumption
4.6.4. Illustration to Calculate E
4.7. Energy Consumption Minimization Problem
4.8. Adaptive Operations
4.8.1. Traffic Rate Measurement
4.8.2. LPL Parameter Adaptation
5. Performance Evaluation
5.1. System Configuration
5.2. Performance Metrics
5.3. Results
5.3.1. Dynamic Number of Applications and Traffic Loads
5.3.2. Scalability Test
5.3.3. Economics of the Model
6. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Madria, S.; Kumar, V.; Dalvi, R. Sensor Cloud: A Cloud of Virtual Sensors. IEEE Softw. 2014, 31, 70–77. [Google Scholar] [CrossRef]
- Mao, Z.; Koksal, C.E.; Shroff, N.B. Near Optimal Power and Rate Control of Multi-Hop Sensor Networks With Energy Replenishment: Basic Limitations With Finite Energy and Data Storage. IEEE Trans. Autom. Control 2012, 57, 815–829. [Google Scholar]
- Tu, Z.; Blum, R.S. On the Limitations of Random Sensor Placement for Distributed Signal Detection. IEEE Trans. Aerospace Electron. Syst. 2009, 45, 555–563. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ladia, R.; Misra, S. Dynamic Optimal Pricing for Heterogeneous Service-Oriented Architecture of Sensor-cloud Infrastructure. IEEE Trans. Serv. Comput. 2015. [Google Scholar] [CrossRef]
- Fazio, M.; Puliafito, A. Cloud4sens: A cloud-based architecture for sensor controlling and monitoring. IEEE Commun. Mag. 2015, 53, 41–47. [Google Scholar] [CrossRef]
- Santos, I.L.; Pirmez, L.; Delicato, F.C.; Khan, S.U.; Zomaya, A.Y. Olympus: The Cloud of Sensors. IEEE Cloud Comput. 2015, 2, 48–56. [Google Scholar] [CrossRef]
- Chatterjee, S.; Sarkar, S.; Misra, S. Energy-efficient data transmission in sensor-cloud. In Proceedings of the Applications and Innovations in Mobile Computing (AIMoC), Kolkata, India, 12–14 February 2015; pp. 68–73.
- Zhu, C.; Leung, V.C.M.; Yang, L.T.; Shu, L. Collaborative Location-Based Sleep Scheduling for Wireless Sensor Networks Integratedwith Mobile Cloud Computing. IEEE Trans. Comput. 2015, 64, 1844–1856. [Google Scholar] [CrossRef]
- Misra, S.; Bera, S.; Mondal, A.; Tirkey, R.; Chao, H.C.; Chattopadhyay, S. Optimal gateway selection in sensor-cloud framework for health monitoring. IET Wirel. Sens. Syst. 2014, 4, 61–68. [Google Scholar] [CrossRef]
- Ojha, T.; Bera, S.; Misra, S.; Raghuwanshi, N.S. Dynamic Duty Scheduling for Green Sensor-Cloud Applications. In Proceedings of the 2014 IEEE 6th International Conference on Cloud Computing Technology and Science (CloudCom), Singapore, 15–18 December 2014; pp. 841–846.
- Harb, H.; Makhoul, A.; Tawil, R.; Jaber, A. Energy-efficient data aggregation and transfer in periodic sensor networks. IET Wirel. Sens. Syst. 2014, 4, 149–158. [Google Scholar] [CrossRef]
- Gao, H.; Fang, X.; Li, J.; Li, Y. Data Collection in Multi-Application Sharing Wireless Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 403–412. [Google Scholar] [CrossRef]
- Phan, D.H.; Suzuki, J.; Omura, S.; Oba, K. Toward sensor-cloud integration as a service: Optimizing three-tier communication in cloud-integrated sensor networks. In Proceedings of the 8th International Conference on Body Area Networks (BodyNets ’13), Boston, MA, USA, 30 September–2 October 2013; pp. 355–362.
- Dinh, T.; Kim, Y. A Novel Location-Centric IoT-Cloud Based On-Street Car Parking Violation Management System in Smart Cities. Sensors 2016, 16, 810. [Google Scholar] [CrossRef] [PubMed]
- Giovanni, M.; Salvatore, D.; Francesco, L.; Dario, B.; Antonio, P.; Valeria, D.; Marco, S.; Giovanni, T. Stack4Things as a fog computing platform for Smart City applications. In Proceedings of the 2nd IEEE INFOCOM Workshop on Smart Cities and Urban Computing, San Francisco, CA, USA, 11 April 2016.
- Fortino, G.; Parisi, D.; Pirrone, V.; Di Fatta, G. BodyCloud: A SaaS approach for community Body Sensor Networks. Future Gener. Comput. Syst. 2014, 35, 62–79. [Google Scholar] [CrossRef]
- Fortino, G.; Di Fatta, G.; Pathan, M.; Vasilakos, A.V. Cloud-assisted body area networks: State-of-the-art and future challenges. Wirel. Netw. 2014, 20, 1925–1938. [Google Scholar] [CrossRef]
- Agrawal, A.; Kaushal, S. A Study on Integration of Wireless Sensor Network and Cloud Computing: Requirements, Challenges and Solutions. In Proceedings of the Sixth International Conference on Computer and Communication Technology 2015 (ICCCT ’15), Allahabad, India, 25–27 September 2015; pp. 152–157.
- Hassanalieragh, M.; Page, A.; Soyata, T.; Sharma, G.; Aktas, M.; Mateos, G.; Kantarci, B.; Andreescu, S. Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges. In Proceedings of the 2015 IEEE International Conference on Services Computing (SCC ’15), New York, NY, USA, 27 June–2 July 2015; IEEE Computer Society: Washington, DC, USA, 2015; pp. 285–292. [Google Scholar]
- Zhu, C.; Wang, H.; Liu, X.; Shu, L.; Yang, L.T.; Leung, V.C.M. A Novel Sensory Data Processing Framework to Integrate Sensor Networks With Mobile Cloud. IEEE Syst. J. 2014, PP, 1–12. [Google Scholar] [CrossRef]
- Zhu, C.; Sheng, Z.; Leung, V.C.M.; Shu, L.; Yang, L.T. Toward Offering More Useful Data Reliably to Mobile Cloud From Wireless Sensor Network. IEEE Trans. Emerg. Top. Comput. 2015, 3, 84–94. [Google Scholar]
- Zhu, C.; Leung, V.C.M.; Wang, H.; Chen, W.; Liu, X. Providing Desirable Data to Users When Integrating Wireless Sensor Networks with Mobile Cloud. In Proceedings of the 2013 IEEE 5th International Conference onCloud Computing Technology and Science (CloudCom), Bristol, UK, 2–5 December 2013; pp. 607–614.
- Ren, Y.C.; Suzuki, J.; Omura, S.; Hosoya, R. Adaptability and Stability in Dynamic Integration of Body Sensor Networks with Clouds. In Proceedings of the 2015 IEEE 14th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 28–30 September 2015; pp. 98–105.
- Huang, J.; Du, D.; Duan, Q.; Zhang, Y.; Zhao, Y.; Luo, H.; Mai, Z.; Liu, Q. Modeling and Analysis on Congestion Control for Data Transmission in Sensor Clouds. Int. J. Distrib. Sens. Netw. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Samarah, S. A Data Predication Model for Integrating Wireless Sensor Networks and Cloud Computing. Procedia Comput. Sci. 2015, 52, 1141–1146. [Google Scholar] [CrossRef]
- Barbarán, J.; Diaz, M.; Rubio, B. A Virtual Channel-Based Framework for the Integration of Wireless Sensor Networks in the Cloud. In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, 27–29 August 2014; pp. 334–339.
- Misra, S.; Singh, A.; Chatterjee, S.; Mandal, A.K. QoS-aware sensor allocation for target tracking in sensor-cloud. Ad Hoc Netw. 2015, 33, 140–153. [Google Scholar] [CrossRef]
- Sen, B.K.; Khatua, S.; Das, R.K. Target coverage using a collaborative platform for sensor cloud. In Proceedings of the 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), Kolkata, India, 15–18 December 2015; pp. 1–6.
- Zhu, C.; Leung, V.C.M.; Yang, L.T.; Shu, L.; Rodrigues, J.J.P.C.; Li, X. Trust assistance in Sensor-Cloud. In Proceedings of the 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 26 April–1 May 2015; pp. 342–347.
- Chatterjee, S.; Misra, S. Dynamic and adaptive data caching mechanism for virtualization within sensor-cloud. In Proceedings of the 2014 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), New Delhi, India, 14–17 December 2014; pp. 1–6.
- Lyu, Y.; Yan, F.; Chen, Y.; Wang, D.; Shi, Y.; Agoulmine, N. High-performance scheduling model for multisensor gateway of cloud sensor system-based smart-living. Inf. Fusion 2015, 21, 42–56. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, D.; Shu, L.; Tsang, K.-F. A Novel Two-Tier Cooperative Caching Mechanism for the Optimization of Multi-Attribute Periodic Queries in Wireless Sensor Networks. Sensors 2015, 15, 15033–15066. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Han, G.; Shu, L.; Feng, N.; Zhu, C.; Lloret, J. Distributed Parameter Estimation for Mobile Wireless Sensor Network Based on Cloud Computing in Battlefield Surveillance System. IEEE Access 2015, 3, 1729–1739. [Google Scholar] [CrossRef]
- Chatterjee, S.; Misra, S.; Khan, S. Optimal Data Center Scheduling for Quality of Service Management in Sensor-cloud. IEEE Trans. Cloud Comput. 2015, PP, 1. [Google Scholar] [CrossRef]
- Ojha, T.; Bera, S.; Misra, S.; Raghuwanshi, N.S. Dynamic Duty Scheduling for Green Sensor-Cloud Applications. In Proceedings of the 2014 IEEE 6th International Conference on Cloud Computing Technology and Science (CloudCom), Singapore, 15–18 December 2014; pp. 841–846.
- Chatterjee, S.; Misra, S. Optimal composition of a virtual sensor for efficient virtualization within sensor-cloud. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 448–453.
- Misra, S.; Chatterjee, S.; Obaidat, M.S. On Theoretical Modeling of Sensor Cloud: A Paradigm Shift from Wireless Sensor Network. IEEE Syst. J. 2014, PP, 1–10. [Google Scholar] [CrossRef]
- Distefano, S.; Merlino, G.; Puliafito, A. A utility paradigm for IoT: The sensing Cloud. Pervasive Mob. Comput. 2015, 20, 127–144. [Google Scholar] [CrossRef]
- Cubo, J.; Nieto, A.; Pimentel, E. A Cloud-Based Internet of Things Platform for Ambient Assisted Living. Sensors 2014, 14, 14070–14105. [Google Scholar] [CrossRef] [PubMed]
- Lehmhus, D.; Wuest, T.; Wellsandt, S.; Bosse, S.; Kaihara, T.; Thoben, K.-D.; Busse, M. Cloud-Based Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift. Sensors 2015, 15, 32079–32122. [Google Scholar] [CrossRef] [PubMed]
- Merlino, G.; Bruneo, D.; Distefano, S.; Longo, F.; Puliafito, A.; Al-Anbuky, A. A Smart City Lighting Case Study on an OpenStack-Powered Infrastructure. Sensors 2015, 15, 16314–16335. [Google Scholar] [CrossRef] [PubMed]
- Marie, P.; Desprats, T.; Chabridon, S.; Sibilla, M.; Taconet, C. From Ambient Sensing to IoT-based Context Computing: An Open Framework for End to End QoC Management. Sensors 2015, 15, 14180–14206. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Chen, Y.-Y.; Hsu, C. A New Approach to Integrate Internet-of-Things and Software-as-a-Service Model for Logistic Systems: A Case Study. Sensors 2014, 14, 6144–6164. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, A.; Kansal, A.; Nath, S. On-line sensing task optimization for shared sensors. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN ’10), ACM, New York, NY, USA, Stockholm, Sweden, 12–15 April 2010; pp. 47–57.
- Huang, P.; Xiao, L.; Soltani, S.; Mutka, M.; Xi, N. The evolution of mac protocols in wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2013, 15, 101–120. [Google Scholar] [CrossRef]
- Dinh, T.; Kim, Y.; Gu, T.; Vasilakos, A.V. An adaptive low power listening protocol for wireless sensor networks in noisy environments. Elsevier Comput. Commun. J. 2016, in press. [Google Scholar]
- TinyOS LPL MAC. Available online: http://www.tinyos.net/tinyos-2.x/doc/html/tep105.html (accessed on 27 June 2016).
- Yuriyama, M.; Kushida, T. Sensor-Cloud Infrastructure - Physical Sensor Management with Virtualized Sensors on Cloud Computing. In Proceedings of the 13th International Conference on Network-Based Information Systems (NBiS), Takayama, Japan, 14–16 September 2010; pp. 1–8.
- Open Geospatial Consortium. Available online: http://www.opengeospatial.org/ (accessed on 27 June 2016).
- Park, Y.K.; Dinh, T.; Kim, Y. A network monitoring system in 6LoWPAN networks. In Proceedings of the 2012 Fourth International Conference on Communications and Electronics (ICCE), Hue, Vietnam, 1–3 August 2012; pp. 69–73.
- Dinh, T.; Gu, T. A Novel Metric for Opportunistic Routing in Heterogenous Duty-Cycled Wireless Sensor Networks. In Proceedings of the 2015 IEEE 23rd International Conference on Network Protocols (ICNP), San Francisco, CA, USA, 10–13 November 2015; pp. 224–234.
- Lee, H.; Cerpa, A.; Levis, P. Improving Wireless Simulation Through Noise Modeling. In Proceedings of the 2007 6th International Symposium on Information Processing in Sensor Networks, Cambridge, MA, USA, 25–27 April 2007; pp. 21–30.
- Dinh, T.; Kim, Y. Actor-oriented directional anycast routing in wireless sensor and actor networks with smart antennas. Wirel. Netw. 2016, 22, 1–12. [Google Scholar] [CrossRef]
Parameter | Meaning |
---|---|
Dedicated sensing interval of application α | |
Consolidated sensing interval | |
τ | Sensor type |
Region of interest | |
Traffic rate () | The number of incoming data packets in a unit of time (i.e., 1 s) |
Sleep interval () | The sleep period in a cycle |
Active period ( ) | The total wakeup period in a cycle, which depends on the following two parameter |
Periodic wakeup period ( ) | The period a node remains awake after waking up in every cycle if the node does not send or receive any packet |
Extended wakeup period () | The extra period a node extends its wakeup time after receiving a packet |
Cycle length () | The period between two consecutive sleep times; |
Number of received packets (k) | The number of packets a node receives in a cycle during its active period. |
Parameter | Value | Parameter | Value |
---|---|---|---|
Number of cloud | 1 | Sensing interval options | [2 s, 120 s] |
Number of sensors | 120 | Number of sink node | 1 |
Number of applications | 10 | Number of sensor types | 3 |
Data packet length | 32 bytes | Preamble packet length | 9 bytes |
Time window T | 10 s | CCAchecks | Up to 400 times |
0.5 s | Hardware | CC2420 | |
10 ms | 2 s | ||
1 s | 120 s | ||
0.5 s | 100 ms | ||
γ | 18.8 mA | η | 18.8 mA |
δ | 17.4 mA | Transmission range | 20 m |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinh, T.; Kim, Y. An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud. Sensors 2016, 16, 992. https://doi.org/10.3390/s16070992
Dinh T, Kim Y. An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud. Sensors. 2016; 16(7):992. https://doi.org/10.3390/s16070992
Chicago/Turabian StyleDinh, Thanh, and Younghan Kim. 2016. "An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud" Sensors 16, no. 7: 992. https://doi.org/10.3390/s16070992
APA StyleDinh, T., & Kim, Y. (2016). An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud. Sensors, 16(7), 992. https://doi.org/10.3390/s16070992