Brillouin Optical Correlation Domain Analysis in Composite Material Beams
Abstract
:1. Introduction
2. Phase-Coded Brillouin Optical Correlation Domain Analysis
3. Measurement Setup
4. Experimental Results
4.1. Monitoring of a Composite Beam During and Following Production
4.2. Measurement of Stiffness and Young’s Modulus in Three-Point Bending of a Composite Beam
4.3. Strain Measurements in a Model Wing of an Unmanned Aerial Vehicle
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zou, Y.; Tong, L.; Steven, P. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—A review. J. Sound Vib. 2000, 230, 357–378. [Google Scholar] [CrossRef]
- Katunin, A.; Dragan, K.; Dziendzikowski, M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Compos. Struct. 2015, 127, 1–9. [Google Scholar] [CrossRef]
- Polimeno, U.; Meo, M. Detecting barely visible impact damage detection on aircraft composites structures. Compos. Struct. 2009, 91, 398–402. [Google Scholar]
- Staszewski, W.J.; Mahzan, S.; Traynor, R. Health monitoring of aerospace composite structures—Active and passive approach. Compos. Sci. Technol. 2009, 69, 1678–1685. [Google Scholar]
- Diamanti, K.; Soutis, C. Structural health monitoring technique for aircraft composite structures. Prog. Aerosp. Sci. 2010, 46, 342–352. [Google Scholar] [CrossRef]
- Park, B.; An, Y.-K.; Sohn, H. Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos. Sci. Technol. 2014, 100, 10–18. [Google Scholar] [CrossRef]
- Avdelidis, N.P.; Almond, D.P.; Dobbinson, A.; Hawtin, B.C.; Ibarra-Castanedo, C.; Maldague, X. Aircraft composites assessment by means of transient thermal NDT. Prog. Aerosp. Sci. 2004, 40, 143–162. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M. Impact damage in GFRP: New insights with infrared thermography. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1839–1847. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Lopez, I. Automatic detection of impact damage in carbon fiber composites using active thermography. Infrared Phys. Technol. 2013, 58, 36–46. [Google Scholar] [CrossRef]
- Trendafilova, I.; Cartmell, M.P.; Ostachowicz, W. Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition. J. Sound Vib. 2008, 313, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Rizos, D.D.; Fassois, S.D.; Marioli-Riga, Z.P.; Karanika, A.N. Vibration-based skin damage statistical detection and restoration assessment in a stiffened aircraft panel. Mech. Syst. Signal Process. 2008, 22, 315–337. [Google Scholar] [CrossRef]
- Ratcliffe, C.; Heider, D.; Crane, R.; Krauthauser, C.; Yoon, M.K.; Gillespie, J.W., Jr. Investigation into the use of low cost MEMS accelerometers for vibration based damage detection. Compos. Struct. 2008, 82, 61–70. [Google Scholar] [CrossRef]
- Loutas, T.H.; Panopoulou, A.; Roulias, D.; Kostopoulos, V. Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements. Expert Syst. Appl. 2012, 39, 8412–8422. [Google Scholar] [CrossRef]
- Katunin, A. Vibration-based spatial damage identification in honeycomb-core sandwich composite structures using wavelet analysis. Compos. Struct. 2014, 118, 385–391. [Google Scholar] [CrossRef]
- Culshaw, B.; Dakin, J. Optical Fiber Sensors: Principles and Components; Artech House: London, UK, 1988. [Google Scholar]
- Udd, E.; Spillman, W.B. Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kalkanis, K.; Tsamasphyros, G.J.; Kanderakis, G.N.; Pantelelis, N.; Tur, M.; Maistros, G.; Botsev, Y. Experimental control of curing via dielectric and fibre Bragg grating sensors for composite patch repairs. Sens. Lett. 2011, 9, 1265–1272. [Google Scholar] [CrossRef]
- Botsev, Y.; Arad, E.; Tur, M.; Kressel, I.; Gali, S.; Thursby, G.; Culshaw, B. Using fiber Bragg gratings to measure Lamb waves in an anisotropic composite plate. In Proceedings of the 19th Optical Fiber Sensor Conference (OFS-19), Perth, Australia, 14–18 April 2008. [Google Scholar]
- Bolognini, G.; Park, J.; Soto, M.A.; Park, N.; Di-Pasquale, F. Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification. Meas. Sci. Technol. 2007, 18, 3211–3218. [Google Scholar] [CrossRef]
- Shiloh, L.; Eyal, A. Distributed acoustic and vibration sensing via optical fractional Fourier transform reflectometry. Opt. Express 2015, 23, 4296–4306. [Google Scholar] [CrossRef] [PubMed]
- Kurashima, T.; Horiguchi, T.; Tateda, M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett. 1990, 15, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Niklès, M.; Thévenaz, L.; Robert, P.A. Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Opt. Lett. 1996, 21, 758–760. [Google Scholar] [CrossRef] [PubMed]
- Tur, M.; Sovran, I.; Bergman, A.; Motil, A.; Shapira, O.; Ben-Simon, U.; Kressel, I. Structural health monitoring of composite-based UAVs using simultaneous fiber optic interrogation by static Rayleigh-based distributed sensing and dynamic fiber Bragg grating point sensors. In Proceedings of the 24th Optical Fiber Sensor Conference (OFS-24), Curitiba, Brazil, 28 September–2 October 2015. [Google Scholar]
- Shimizu, T.; Yari, T.; Nagai, K.; Takeda, N. Strain measurement using a Brillouin optical time domain reflectometer for development of aircraft structure health monitoring system. In Proceedings of the 6th Annual International Symposium on NDE for Health Monitoring and Diagnostics, Newport Beach, CA, USA, 4–8 March 2001; Volume 4335, pp. 312–322. [Google Scholar]
- Murayama, H.; Kageyama, K.; Naruse, H.; Shimada, A.; Uzawa, K. Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures. J. Intell. Mater. Syst. Struct. 2003, 14, 3–13. [Google Scholar] [CrossRef]
- Gyger, F.; Rochat, E.; Chin, S.; Niklès, M.; Thévenaz, L. Extending the sensing range of Brillouin optical time-domain analysis up to 325 km combining four optical repeaters. In Proceedings of the 23rd Optical Fiber Sensor Conference (OFS-23), Santander, Spain, 2–6 June 2014. [Google Scholar]
- London, Y.; Antman, Y.; Preter, E.; Levanon, N.; Zadok, A. Brillouin optical correlation domain analysis addressing 440,000 resolution points. J. Lightw. Technol. 2016, 34, 4421–4429. [Google Scholar] [CrossRef]
- Denisov, A.; Soto, M.A.; Thevenaz, L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: Theoretical analysis and experimental demonstration. Light Sci. Appl. 2016, 5, e16074. [Google Scholar] [CrossRef]
- Dominguez-Lopez, A.; Soto, M.A.; Martin-Lopez, S.; Thevenaz, L.; Gonzalez-Herraez, M. Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor. Opt. Lett. 2017, 42, 1903–1906. [Google Scholar] [CrossRef] [PubMed]
- Urricelqui, J.; Zornoza, A.; Sagues, M.; Loayssa, A. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation. Opt. Express 2012, 20, 26942–26949. [Google Scholar] [CrossRef] [PubMed]
- Motil, A.; Davidi, R.; Bergman, A.; Botsev, Y.; Hahami, M.; Tur, M. Distributed and dynamic monitoring of 4 km/sec waves using a Brillouin fiber optic strain sensor. In Proceedings of the Fifth European Workshop on Optical Fibre Sensors, Krakow, Poland, 19–22 May 2013. [Google Scholar]
- Sovran, I.; Motil, A.; Tur, M. Frequency-scanning BOTDA with ultimately fast acquisition speed. IEEE Photon. Technol. Lett. 2015, 27, 1426–1429. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, H.; Chen, L.; Bao, X. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair. Appl. Opt. 2012, 51, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Song, K.Y.; He, Z.; Hotate, K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis. Opt. Lett. 2006, 31, 2526–2528. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; London, Y.; Antman, Y.; Zadok, A. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission. Opt. Express 2014, 22, 12070–12078. [Google Scholar] [CrossRef] [PubMed]
- Minardo, A.; Coscetta, A.; Bernini, R.; Ruiz-Lombera, R.; Mirapeix Serrano, J.; Lopez-Higuera, J.M.; Zeni, L. Structural damage identification in an aluminum composite plate by Brillouin sensing. IEEE Sens. 2015, 15, 659–660. [Google Scholar] [CrossRef]
- Minakuchi, S.; Takeda, N.; Takeda, S.-I.; Nagao, Y.; Franceschetti, A.; Liu, X. Life cycle monitoring of large-scale CFRP VARTM structure by fiber-optic-based distributed sensing. Compos. Part A 2011, 42, 669–676. [Google Scholar] [CrossRef]
- Liu, R.M.; Babanajad, S.K.; Taylor, T.; Ansari, F. Experimental study on structural defect detection by monitoring distributed dynamic strain. Smart Mater. Struct. 2015, 24, 115038. [Google Scholar] [CrossRef]
- Peled, Y.; Motil, A.; Kressel, I.; Tur, M. Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA. Opt. Express 2013, 21, 10697–10705. [Google Scholar] [CrossRef] [PubMed]
- Zadok, A.; Antman, Y.; Primrov, N.; Denisov, A.; Sancho, J.; Thévenaz, L. Random-access distributed fiber sensing. Laser Photonics Rev. 2012, 6, L1–L5. [Google Scholar] [CrossRef]
- London, Y.; Silbiger, M.; Antman, Y.; Efraim, L.; Adler, G.; Zadok, A. High-resolution distributed fiber-optic monitoring of composite beams production. In Proceedings of the 10th International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, USA, 1–3 September 2015. [Google Scholar]
- London, Y.; Antman, Y.; Silbiger, M.; Efraim, L.; Froochzad, A.; Adler, G.; Levenberg, E.; Zadok, A. High-resolution Brillouin analysis of composite materials beams. In Proceedings of the 24th Optical Fiber Sensor Conference (OFS-24), Curitiba, Brazil, 28 September–2 October 2015. [Google Scholar]
- Stern, Y.; London, Y.; Preter, E.; Antman, Y.; Shlomi, O.; Silbiger, M.; Adler, G.; Zadok, A. High-resolution Brillouin analysis in a carbon-fiber-composite unmanned aerial vehicle model wing. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors, Limerick, Ireland, 31 May–3 June 2016. [Google Scholar]
- Hotate, K.; Hasegawa, T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation. IEICE Trans. Electron. 2000, E83-C, 405–412. [Google Scholar]
- Antman, Y.; Primerov, N.; Sancho, J.; Thevenaz, L.; Zadok, A. Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps. Opt. Express 2012, 20, 7807–7821. [Google Scholar] [CrossRef] [PubMed]
- Motil, A.; Bergman, A.; Tur, M. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2016, 78, 81–103. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic: Cambridge, MA, USA, 2008. [Google Scholar]
- Elooz, D.; Antman, Y.; Levanon, N.; Zadok, A. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis. Opt. Express 2014, 22, 6453–6463. [Google Scholar] [CrossRef] [PubMed]
- London, Y.; Antman, Y.; Cohen, R.; Kimelfeld, N.; Levanon, N.; Zadok, A. High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding. Opt. Express 2014, 22, 27144–27158. [Google Scholar] [CrossRef] [PubMed]
- Zadok, A.; Zilka, E.; Eyal, A.; Thevenaz, L.; Tur, M. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers. Opt. Express 2008, 16, 21692–21707. [Google Scholar] [CrossRef] [PubMed]
- Urricelqui, J.; Lopez-Fernandino, F.; Sagues, M.; Loayssa, A. Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction. IEEE J. Lightw. Technol. 2015, 33, 2633–2638. [Google Scholar] [CrossRef]
- López-Gil, A.; Domínguez-López, A.; Martín-López, S.; González-Herráez, M. Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands. In Proceedings of the 23rd Optical Fiber Sensor Conference (OFS-23), Santander, Spain, 2–6 June 2014. [Google Scholar]
- Ben-Amram, A.; Stern, Y.; London, Y.; Antman, Y.; Zadok, A. Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms. Opt. Express 2015, 23, 28244–28257. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.A.; Thévenaz, L. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Opt. Express 2013, 21, 31347–31366. [Google Scholar] [CrossRef] [PubMed]
- Nikles, M.; Thevenaz, L.; Robert, P.A. Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightw. Technol. 1997, 15, 1842–1851. [Google Scholar] [CrossRef]
- Hibbeler, R.C. Mechanics of Materials, 9th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2013. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stern, Y.; London, Y.; Preter, E.; Antman, Y.; Diamandi, H.H.; Silbiger, M.; Adler, G.; Levenberg, E.; Shalev, D.; Zadok, A. Brillouin Optical Correlation Domain Analysis in Composite Material Beams. Sensors 2017, 17, 2266. https://doi.org/10.3390/s17102266
Stern Y, London Y, Preter E, Antman Y, Diamandi HH, Silbiger M, Adler G, Levenberg E, Shalev D, Zadok A. Brillouin Optical Correlation Domain Analysis in Composite Material Beams. Sensors. 2017; 17(10):2266. https://doi.org/10.3390/s17102266
Chicago/Turabian StyleStern, Yonatan, Yosef London, Eyal Preter, Yair Antman, Hilel Hagai Diamandi, Maayan Silbiger, Gadi Adler, Eyal Levenberg, Doron Shalev, and Avi Zadok. 2017. "Brillouin Optical Correlation Domain Analysis in Composite Material Beams" Sensors 17, no. 10: 2266. https://doi.org/10.3390/s17102266
APA StyleStern, Y., London, Y., Preter, E., Antman, Y., Diamandi, H. H., Silbiger, M., Adler, G., Levenberg, E., Shalev, D., & Zadok, A. (2017). Brillouin Optical Correlation Domain Analysis in Composite Material Beams. Sensors, 17(10), 2266. https://doi.org/10.3390/s17102266