Detection of Water Content in Rapeseed Leaves Using Terahertz Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sample Preparation
2.3. Data Acquisition
2.3.1. THz Spectra
2.3.2. Leaf Water Content
2.4. Modeling Methods
2.4.1. PLS Method
2.4.2. KPLS Method
- Step. 1.
- Calculating the kernel matrix of by the kernel function.
- Step. 2.
- Centering the kernel matrix by Equation (12):
- Step. 3.
- Initializing the variable . , , . Computing these formulas iteratively until the algorithm converge.
- Step. 4.
- , repeating Step 3 until all vectors of and are obtained.
- Step. 5.
- Calculating the prediction values of the calibration set samples. , where , .
- Step. 6.
- For the validation set (, is the number of samples and is the number of variables), calculating its kernel matrix and then centering by Equation (13).
- Step. 7.
- Calculating the prediction values of the validation set samples. .
2.4.3. Boosting-PLS Method
- Step. 1.
- Normalizing the sample weights , where is the number of samples. Initializing the initial number of iterations .
- Step. 2.
- Calculating the sampling probability of each sample in the original calibration set. . Using the roulette method to pick samples with replacement from the original training set.
- Step. 3.
- Establishing the PLS base model with the samples picked out by Step 2. Putting all the training samples into . Calculating the prediction error of each sample.
- Step. 4.
- Calculating the sum of the weighted error in the t-th iteration
- Step. 5.
- Calculating the indicator . Updating the new weight of each sample.
- Step. 6.
- Repeating Steps 2 to Steps 5 until .
3. Results and Discussion
3.1. Spectra of Rapeseed Leaves
3.2. Analysis of Leaf Water Content and THz Spectra
3.3. Predicting Water Content by Modeling Methods
3.3.1. Predicting Leaf Water Content with PLS Model
3.3.2. Predicting Leaf Water Content with KPLS Model
3.3.3. Predicting Leaf Water Content with Boosting-PLS Model
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Qian, W.; Meng, J.M.; Frauen, M.; Sass, O.; Noack, J.; Jung, C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor. Appl. Genet. 2006, 113, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ma, C.; Yue, Y.; Hu, K.; Li, Y.; Duan, Z.; Wu, M.; Tu, J.; Shen, J.; Yi, B. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genom. 2015, 16, 379. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, S.; Corpas, F.J.; Borsani, O.; Barroso, J.B.; Monza, J. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci. 2013, 201–202, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.Q.; Zhong, C.; Chen, W.; Yang, L.; Niu, Y.Z.; Center, R.; University, S.A. Effects of Selenium on Seedling Emergence and Chlorophyll Content of Brassica napus L. under Waterlogging Stress. Southwest China J. Agric. Sci. 2013, 26, 1398–1401. [Google Scholar]
- Zubair, M.; Rizwan, K.; Rashid, U.; Saeed, R.; Saeed, A.A.; Rasool, N.; Riaz, M. GC/MS profiling, in vitro antioxidant, antimicrobial and haemolytic activities of Smilax macrophylla leaves. Arab. J. Chem. 2017, 10, S1460–S1468. [Google Scholar] [CrossRef]
- Knani, S.; Aouaini, F.; Bahloul, N.; Khalfaoui, M.; Hachicha, M.A.; Ben Lamine, A.; Kechaou, N. Modeling of adsorption isotherms of water vapor on Tunisian olive leaves using statistical mechanical formulation. Phys. A 2014, 400, 57–70. [Google Scholar] [CrossRef]
- Federici, J.F. Review of Moisture and Liquid Detection and Mapping using Terahertz Imaging. J. Infrared Millim. Terahertz Waves 2012, 33, 97–126. [Google Scholar] [CrossRef]
- Coutu, R.A.; Medvedev, I.R.; Petkie, D.T. Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy. Sensors 2016, 16, 251. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Jiang, Y.; Lian, F.; Zhang, Y.; Xia, S. Characterization of Wheat Varieties Using Terahertz Time-Domain Spectroscopy. Sensors 2015, 15, 12560–12572. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, A.; Srivastava, T.; Jha, R. Ultrasensitive THz—Plasmonics gaseous sensor using doped graphene. Sens. Actuators B Chem. 2016, 227, 291–295. [Google Scholar] [CrossRef]
- Bai, Y.; Bu, T.; Chen, K.; Zhuang, S. Review about the Optical-Controlled Terahertz Waves Modulator. Appl. Spectrosc. Rev. 2015, 50, 707–727. [Google Scholar] [CrossRef]
- Gente, R.; Born, N.; Voß, N.; Sannemann, W.; Léon, J.; Koch, M.; Castro-Camus, E. Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data. J. Infrared Millim. Terahertz Waves 2013, 34, 316–323. [Google Scholar] [CrossRef]
- Rehn, A.; Gente, R.; Probst, T.; Balzer, J.C. Plant water status monitoring with THz QTDS. In Proceedings of the 2016 German Microwave Conference (GeMiC), Bochum, Germany, 14–16 March 2016. [Google Scholar]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, G.A.; Feng, J.; Calvo-Polanco, M. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2010, 114, 899–910. [Google Scholar] [CrossRef]
- Gente, R.; Rehn, A.; Koch, M. Contactless Water Status Measurements on Plants at 35 GHz. J. Infrared Millim. Terahertz Waves 2014, 36, 312–317. [Google Scholar] [CrossRef]
- Born, N.; Behringer, D.; Liepelt, S.; Beyer, S.; Schwerdtfeger, M.; Ziegenhagen, B.; Koch, M. Monitoring plant drought stress response using terahertz time-domain spectroscopy. Plant Physiol. 2014, 164, 1571. [Google Scholar] [CrossRef] [PubMed]
- Hadjiloucas, S.; Galvão, R.K.H.; Bowen, J.W. Analysis of spectroscopic measurements of leaf water content at terahertz frequencies using linear transforms. J. Opt. Soc. Am. A 2002, 19, 2495–2509. [Google Scholar] [CrossRef]
- Castrocamus, E.; Palomar, M.; Covarrubias, A.A. Leaf water dynamics of Arabidopsis thaliana monitored in vivo using terahertz time-domain spectroscopy. Sci. Rep. 2013, 3, 2910. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Kawase, K.; Mizuno, M.; Yamashita, M.; Otani, C. Nondestructive and Real-time Measurement of Moisture in Plant. IEEE Trans. Electron. Inf. Syst. 2004, 124, 1672–1677. [Google Scholar] [CrossRef]
- Shinzawa, H.; Jiang, J.H.; Ritthiruangdej, P.; Ozaki, Y. Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. J. Chemom. 2010, 20, 436–444. [Google Scholar] [CrossRef]
- Ren, D.; Qu, F.; Lv, K.; Zhang, Z.; Xu, H.; Wang, X. A gradient descent boosting spectrum modeling method based on back interval partial least squares. Neurocomputing 2016, 171, 1038–1046. [Google Scholar] [CrossRef]
- Walther, M.; Plochocka, P.; Fischer, B.; Helm, H.; Uhd, J.P. Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. Biopolymers 2002, 67, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Skidmore, A.K.; Groen, T.A.; Schlerf, M. Evaluation of three proposed indices for the retrieval of leaf water content from the mid-wave infrared (2–6 m) spectra. Agric. For. Meteorol. 2013, 171–172, 65–71. [Google Scholar] [CrossRef]
- Rogalski, A.; Sizov, F. Terahertz detectors and focal plane arrays. Opto-Electron. Rev. 2011, 19, 346–404. [Google Scholar] [CrossRef]
- Duvillaret, L.; Garet, F.; Coutaz, J.L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2002, 2, 739–746. [Google Scholar] [CrossRef]
- Dorney, T.D.; Baraniuk, R.G.; Mittleman, D.M. Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2001, 18, 1562. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Wang, Q.; Zheng, C. Best hyperspectral indices for tracing leaf water status as determined from leaf dehydration experiments. Ecol. Indic. 2015, 54, 96–107. [Google Scholar] [CrossRef]
- Seelig, H.D.; Hoehn, A.; Stodieck, L.S.; Klaus, D.M.; Adams, W.W., III; Emery, W.J. The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. Int. J. Remote Sens. 2008, 29, 3701–3713. [Google Scholar] [CrossRef]
- Ullah, S.; Skidmore, A.K.; Naeem, M.; Schlerf, M. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis. Sci. Total Environ. 2012, 437, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 625–632. [Google Scholar] [CrossRef]
- Fang, M.; Ju, W.; Zhan, W.; Cheng, T.; Qiu, F.; Wang, J. A new spectral similarity water index for the estimation of leaf water content from hyperspectral data of leaves. Remote Sens. Environ. 2017, 196, 13–27. [Google Scholar] [CrossRef]
- Baldacci, L.; Pagano, M.; Masini, L.; Toncelli, A.; Carelli, G.; Storchi, P. Non-invasive absolute measurement of leaf water content using terahertz quantum cascade lasers. Plant Methods 2017, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens. Environ. 2010, 115, 659–670. [Google Scholar] [CrossRef]
- González-Fernández, A.B.; Rodríguez-Pérez, J.R.; Marabel, M.; Álvarez-Taboada, F. Spectroscopic estimation of leaf water content in commercial vineyards using continuum removal and partial least squares regression. Sci. Horticult. 2015, 188, 15–22. [Google Scholar] [CrossRef]
Spectra | Sample Set | N a | Range (%) | Mean (%) | SD |
---|---|---|---|---|---|
Transmission | Calibration | 50 | 1.48–91.39 | 70.00 | 0.2002 |
Validation | 30 | 25.93–87.77 | 68.02 | 0.1597 | |
Absorption | Calibration | 50 | 1.48–91.39 | 68.09 | 0.1946 |
Validation | 30 | 25.93–90.04 | 71.20 | 0.1699 | |
Full set | 80 | 1.48–91.39 | 69.25 | 0.1853 |
N b | Transmission | Absorption | ||||||
---|---|---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |||||
Rcal | RMSEC | Rval | RMSEP | Rcal | RMSEC | Rval | RMSEP | |
10 | 0.8599 | 0.1371 | 0.8497 | 0.1573 | 0.8581 | 0.1359 | 0.8466 | 0.1413 |
20 | 0.8578 | 0.1812 | 0.8479 | 0.2070 | 0.8639 | 0.1300 | 0.8455 | 0.1362 |
30 | 0.8598 | 0.1416 | 0.8481 | 0.1614 | 0.8656 | 0.1287 | 0.8471 | 0.1224 |
40 | 0.8567 | 0.1174 | 0.8464 | 0.1428 | 0.8565 | 0.1254 | 0.8497 | 0.1249 |
50 | 0.8606 | 0.1137 | 0.8453 | 0.1371 | 0.8645 | 0.1641 | 0.8472 | 0.1632 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, P.; Qu, F.; Lin, L.; Dong, T.; He, Y.; Shao, Y.; Zhang, Y. Detection of Water Content in Rapeseed Leaves Using Terahertz Spectroscopy. Sensors 2017, 17, 2830. https://doi.org/10.3390/s17122830
Nie P, Qu F, Lin L, Dong T, He Y, Shao Y, Zhang Y. Detection of Water Content in Rapeseed Leaves Using Terahertz Spectroscopy. Sensors. 2017; 17(12):2830. https://doi.org/10.3390/s17122830
Chicago/Turabian StyleNie, Pengcheng, Fangfang Qu, Lei Lin, Tao Dong, Yong He, Yongni Shao, and Yi Zhang. 2017. "Detection of Water Content in Rapeseed Leaves Using Terahertz Spectroscopy" Sensors 17, no. 12: 2830. https://doi.org/10.3390/s17122830
APA StyleNie, P., Qu, F., Lin, L., Dong, T., He, Y., Shao, Y., & Zhang, Y. (2017). Detection of Water Content in Rapeseed Leaves Using Terahertz Spectroscopy. Sensors, 17(12), 2830. https://doi.org/10.3390/s17122830