Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm
Abstract
:1. Introduction
- A new method is proposed to diagnose bearing defects under variable speed conditions using CNNs that automatically learn features from the input SEMs and use those features to diagnose various bearing defects.
- Spectral energy maps (SEMs) of the AE signals are proposed for diagnosing bearing defects under variable speed conditions. For a given fault type, the SEMs show no significant variation irrespective of changes in the bearing speed, as demonstrated by the experimental results. Thus, the SEMs can serve as an ideal input to the CNNs for diagnosing bearing defects under variable operating speed.
- This work also investigates various training algorithms for CNNs and proposes the use of S-DLM algorithm for training the CNNs as it results in faster convergence and a better diagnostic performance.
2. The Experimental Testbed and the Seeded Defect Acoustic Emission Data
3. The Proposed Method for Diagnosing Bearing Defects under Variable Speeds
3.1. CNNs and the LeNet-5 Architecture
3.2. Training CNNs Using the Stochastic Diagonal Levenberg-Marquardt Algorithm
3.2.1. Fully Connected Layers
3.2.2. Convolution Layers
3.2.3. Sub-Sampling Layers
4. Experimental Results and Discussion
4.1. Configuration of the Fault Signatures’ Pool
4.2. Efficacy of the Stochastic Diagonal Levenberg-Marquardt Algorithm
4.2.1. Average Training Time of a Single Training Epoch
4.2.2. Convergence of the Learning Algorithms
4.2.3. Classification Accuracy of Different CNNs
4.3. Performance Evaluation of the Proposed Method for Bearing Fault Diagnosis under Variable Operating Speeds
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thorsen, O.V.; Dalva, M. Failure identification and analysis for high-voltage induction motors in the petrochemical industry. IEEE Trans. Ind. Appl. 1999, 35, 810–818. [Google Scholar] [CrossRef]
- Chibani, A.; Chadli, M.; Shi, P.; Braiek, N.B. Fuzzy Fault Detection Filter Design for T–S Fuzzy Systems in the Finite-Frequency Domain. IEEE Trans. Fuzzy Syst. 2017, 25, 1051–1061. [Google Scholar] [CrossRef]
- Dahmani, H.; Chadli, M.; Rabhi, A.; El Hajjaji, A. Road curvature estimation for vehicle lane departure detection using a robust Takagi–Sugeno fuzzy observer. Veh. Syst. Dyn. 2013, 51, 581–599. [Google Scholar] [CrossRef]
- Li, L.; Chadli, M.; Ding, S.X.; Qiu, J.; Yang, Y. Diagnostic Observer Design for TS Fuzzy Systems: Application to Real-Time Weighted Fault Detection Approach. IEEE Trans. Fuzzy Syst. 2017. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, P.; Lim, C.-C. Robust fault estimation observer in the finite frequency domain for descriptor systems. Int. J. Control 2017, 1–30. [Google Scholar] [CrossRef]
- Bediaga, I.; Mendizabal, X.; Arnaiz, A.; Munoa, J. Ball bearing damage detection using traditional signal processing algorithms. IEEE Instrum. Meas. Mag. 2013, 16, 20–25. [Google Scholar] [CrossRef]
- Immovilli, F.; Bianchini, C.; Cocconcelli, M.; Bellini, A.; Rubini, R. Bearing fault model for induction motor with externally induced vibration. IEEE Trans. Ind. Electron. 2013, 60, 3408–3418. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, M.; Chow, T.W.; Pecht, M. Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans. Ind. Electron. 2014, 61, 2441–2451. [Google Scholar] [CrossRef]
- Seshadrinath, J.; Singh, B.; Panigrahi, B.K. Investigation of vibration signatures for multiple fault diagnosis in variable frequency drives using complex wavelets. IEEE Trans. Power Electron. 2014, 29, 936–945. [Google Scholar] [CrossRef]
- Yu, X.; Ding, E.; Chen, C.; Liu, X.; Li, L. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform. Sensors 2015, 15, 27869–27893. [Google Scholar] [CrossRef] [PubMed]
- Frosini, L.; Bassi, E. Stator current and motor efficiency as indicators for different types of bearing faults in induction motors. IEEE Trans. Ind. Electron. 2010, 57, 244–251. [Google Scholar] [CrossRef]
- Lau, E.C.; Ngan, H. Detection of motor bearing outer raceway defect by wavelet packet transformed motor current signature analysis. IEEE Trans. Instrum. Meas. 2010, 59, 2683–2690. [Google Scholar] [CrossRef]
- Henao, H.; Capolino, G.-A.; Fernandez-Cabanas, M.; Filippetti, F.; Bruzzese, C.; Strangas, E.; Pusca, R.; Estima, J.; Riera-Guasp, M.; Hedayati-Kia, S. Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE Ind. Electron. Mag. 2014, 8, 31–42. [Google Scholar] [CrossRef]
- Kang, M.; Islam, M.R.; Kim, J.; Kim, J.-M.; Pecht, M. A hybrid feature selection scheme for reducing diagnostic performance deterioration caused by outliers in data-driven diagnostics. IEEE Trans. Ind. Electron. 2016, 63, 3299–3310. [Google Scholar] [CrossRef]
- Tra, V.; Kim, J.; Khan, S.A.; Kim, J.-M. Incipient fault diagnosis in bearings under variable speed conditions using multiresolution analysis and a weighted committee machine. J. Acoust. Soc. Am. 2017, 142, EL35–EL41. [Google Scholar] [CrossRef] [PubMed]
- Niknam, S.A.; Songmene, V.; Au, Y.J. The use of acoustic emission information to distinguish between dry and lubricated rolling element bearings in low-speed rotating machines. Int. J. Adv. Manuf. Technol. 2013, 69, 2679–2689. [Google Scholar] [CrossRef]
- Nguyen, P.; Kang, M.; Kim, J.-M.; Ahn, B.-H.; Ha, J.-M.; Choi, B.-K. Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques. Expert Syst. Appl. 2015, 42, 9024–9032. [Google Scholar] [CrossRef]
- Frosini, L.; Harlişca, C.; Szabó, L. Induction machine bearing fault detection by means of statistical processing of the stray flux measurement. IEEE Trans. Ind. Electron. 2015, 62, 1846–1854. [Google Scholar] [CrossRef]
- Tandon, N.; Choudhury, A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 1999, 32, 469–480. [Google Scholar] [CrossRef]
- Nembhard, A.D.; Sinha, J.K.; Yunusa-Kaltungo, A. Development of a generic rotating machinery fault diagnosis approach insensitive to machine speed and support type. J. Sound Vib. 2015, 337, 321–341. [Google Scholar] [CrossRef]
- Yunusa-Kaltungo, A.; Sinha, J.K.; Nembhard, A.D. A novel fault diagnosis technique for enhancing maintenance and reliability of rotating machines. Struct. Health Monit. 2015, 14, 604–621. [Google Scholar] [CrossRef]
- Kang, M.; Kim, J.; Wills, L.M.; Kim, J.-M. Time-varying and multiresolution envelope analysis and discriminative feature analysis for bearing fault diagnosis. IEEE Trans. Ind. Electron. 2015, 62, 7749–7761. [Google Scholar] [CrossRef]
- Kang, M.; Kim, J.; Kim, J.-M.; Tan, A.C.; Kim, E.Y.; Choi, B.-K. Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis. IEEE Trans. Power Electron. 2015, 30, 2786–2797. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [Google Scholar] [CrossRef]
- Kang, M.; Kim, J.; Kim, J.-M. High-performance and energy-efficient fault diagnosis using effective envelope analysis and denoising on a general-purpose graphics processing unit. IEEE Trans. Power Electron. 2015, 30, 2763–2776. [Google Scholar] [CrossRef]
- Lacey, S. An overview of bearing vibration analysis. Maint. Asset Manag. 2008, 23, 32–42. [Google Scholar]
- Cerrada, M.; Sánchez, R.; Cabrera, D.; Zurita, G.; Li, C. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal. Sensors 2015, 15, 23903–23926. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shi, T.; Liao, G.; Xuan, J.; Duan, J.; Su, L.; He, Z.; Lai, W. Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings. Sensors 2017, 17, 625. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Osborne, M.R. Fisher’s method of scoring. Int. Stat. Rev. 1992, 60, 99–117. [Google Scholar] [CrossRef]
- LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.-R. Efficient backprop. In Neural Networks: Tricks of the Trade; Springer: New York, NY, USA, 2012; pp. 9–48. [Google Scholar]
- International Organization for Standardization. Condition Monitoring and Diagnosis of Machines–Acoustic Emission; ISO 22096:2007(E); International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- MISTRAS Group Inc. Products and Systems Division. WSα Sensor, General Purpose, Wideband Frequency Acoustic Emission Sensor. Available online: http://www.pacjapan.com/pacjapan_products/AE%20Sensor/PDF/WS_Alpha.pdf (accessed on 1 December 2017).
- Bouvrie, J. Notes on Convolutional Neural Networks. 2006. Available online: http://cogprints.org/5869/ (accessed on 9 January 2017).
- LeCun, Y.; Cortes, C.; Burges, C.J. Mnist Handwritten Digit Database; AT&T Labs: Florham Park, NJ, USA, 2010. [Google Scholar]
- Haykin, S.S.; Haykin, S.S.; Haykin, S.S.; Haykin, S.S. Neural Networks and Learning Machines; Prentice Hall: Upper Saddle River, NJ, USA, 2009; Volume 3. [Google Scholar]
- Becker, S.; Le Cun, Y. Improving the Convergence of Back-Propagation Learning with Second Order Methods. In Proceedings of the 1988 Connectionist Models Summer School, Los Angeles, CA, USA, September 1988; pp. 29–37. [Google Scholar]
- LeCun, Y. Generalization and network design strategies. In Connectionism in Perspective; Elsevier: Zurich, Switzerland, 1989; pp. 143–155. [Google Scholar]
- Wang, Y.; Xu, G.; Zhang, Q.; Liu, D.; Jiang, K. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions. J. Sound Vib. 2015, 348, 381–396. [Google Scholar] [CrossRef]
fs = 250 kHz | Operating Speed (r/Min) 1 | Crack Size | |||
---|---|---|---|---|---|
Length (mm) | Width (mm) | Depth (mm) | |||
Dataset 1 | Training set | 300 | 3 | 0.35 | 0.30 |
Testing set | 300 | 0.35 | 0.30 | ||
Dataset 2 | Training set | 400 | 3 | 0.35 | 0.30 |
Testing set | 400 | 0.35 | 0.30 | ||
Dataset 3 | Training set | 500 | 3 | 0.35 | 0.30 |
Testing set | 500 | 0.35 | 0.30 |
fs = 250 kHz | Operating Speed (r/Min) 1 | Crack Size | |||
---|---|---|---|---|---|
Length (mm) | Width (mm) | Depth (mm) | |||
Dataset 4 | Training set | 300, 400, 500 | 3 | 0.35 | 0.30 |
Testing set | 250, 350, 450 | 0.35 | 0.30 | ||
Dataset 5 | Training set | 300, 400, 500 | 12 | 0.49 | 0.50 |
Testing set | 250, 350, 450 | 0.49 | 0.50 |
Datasets | Learning Algorithm | Average Sensitivity of Each Fault Type | ACA (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
BCI | BCO | BCR | BCIO | BCIR | BCOR | BCIOR | BNC | |||
Dataset 1 | S-GD | 100 | 91.11 | 100 | 51.11 | 60 | 91.11 | 100 | 100 | 86.66 |
S-DLM | 100 | 95.55 | 100 | 100 | 100 | 100 | 100 | 100 | 99.44 | |
M-DLM | 100 | 93.33 | 100 | 100 | 100 | 100 | 100 | 97.77 | 98.88 | |
Dataset 2 | S-GD | 95.55 | 100 | 100 | 100 | 86.66 | 4.44 | 97.77 | 100 | 85.55 |
S-DLM | 100 | 100 | 100 | 100 | 100 | 97.77 | 100 | 100 | 99.72 | |
M-DLM | 97.77 | 100 | 100 | 100 | 100 | 97.77 | 100 | 100 | 99.44 | |
Dataset 3 | S-GD | 100 | 6.66 | 100 | 100 | 100 | 75.55 | 100 | 91.11 | 84.16 |
S-DLM | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
M-DLM | 97.77 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99.72 |
Datasets | Methodologies | Average Sensitivity for Each Fault Type | ACA (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
BCI | BCO | BCR | BCIO | BCIR | BCOR | BCIOR | BNC | |||
Dataset 4 | [9] | 19.62 | 47.40 | 75.18 | 17.03 | 59.62 | 30.74 | 10 | 3.33 | 32.87 |
[10] | 11.11 | 13.33 | 100 | 100 | 97.77 | 97.77 | 0 | 0 | 52.5 | |
Proposed | 66.66 | 100 | 100 | 100 | 89.25 | 99.25 | 99.25 | 99.62 | 94.25 | |
Dataset 5 | [9] | 7.03 | 70 | 66.66 | 79.62 | 5.92 | 44.81 | 74.07 | 62.96 | 51.38 |
[10] | 100 | 100 | 97.77 | 97.77 | 100 | 100 | 0 | 0 | 74.44 | |
Proposed | 100 | 100 | 91.85 | 98.14 | 99.25 | 99.25 | 100 | 99.25 | 98.47 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tra, V.; Kim, J.; Khan, S.A.; Kim, J.-M. Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm. Sensors 2017, 17, 2834. https://doi.org/10.3390/s17122834
Tra V, Kim J, Khan SA, Kim J-M. Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm. Sensors. 2017; 17(12):2834. https://doi.org/10.3390/s17122834
Chicago/Turabian StyleTra, Viet, Jaeyoung Kim, Sheraz Ali Khan, and Jong-Myon Kim. 2017. "Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm" Sensors 17, no. 12: 2834. https://doi.org/10.3390/s17122834
APA StyleTra, V., Kim, J., Khan, S. A., & Kim, J.-M. (2017). Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm. Sensors, 17(12), 2834. https://doi.org/10.3390/s17122834