Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors
Abstract
:1. Introduction
2. Theory
3. Modelling
4. Materials
4.1. ALD of TiO2
4.2. Characterization of the Films
4.3. Properties of the TiO2 Film
5. Measurements
6. Results
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tuchin, V.V. Handbook of Optical Biomedical Diagnostics; SPIE Press: Bellingham, WA, USA, 2002. [Google Scholar]
- Jakovels, D.; Kuzmina, I.; Berzina, A.; Valeine, L.; Spigulis, J. Noncontact monitoring of vascular lesion phototherapy efficiency by RGB multispectral imaging. J. Biomed. Opt. 2013, 18, 126019. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Paidi, S.K.; Kang, J.W.; Spegazzini, N.; Dasari, R.R.; Valdez, T.A.; Barman, I. Discerning the differential molecular pathology of proliferative middle ear lesions using Raman spectroscopy. Sci. Rep. 2015, 5, 13305. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Dingari, N.C.; Spegazzini, N.; Dasari, R.R.; Horowitz, G.L.; Barman, I. Emerging trends in optical sensing of glycemic markers for diabetes monitoring. TrAC Trends Anal. Chem. 2015, 64, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Głowacki, M.J.; Gnyba, M.; Strąkowska, P.; Gardas, M.; Kraszewski, M.; Trojanowski, M.; Strąkowski, M.R. OCT and Raman spectroscopic investigation of sol-gel derived hydroxyapatite enhaced with silver nanoparticles. Metrol. Meas. Syst. 2017, in press. [Google Scholar]
- Brezinski, M.E. Optical Coherence Tomography, 1st ed.; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Rao, Y.-J. Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237. [Google Scholar] [CrossRef]
- Kirkendall, C.K.; Dandridge, A. Overview of high performance fibre-optic sensing. J. Phys. Appl. Phys. 2004, 37, R197–R216. [Google Scholar] [CrossRef]
- Grattan, K.T.; Meggitt, B.T. Optical Fiber Sensor Technology; Kluwer Academic Publisher: Boston, MA, USA, 2000. [Google Scholar]
- Islam, M.R.; Ali, M.M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: A review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [PubMed]
- Wierzba, P.; Jedrzejewska-Szczerska, M. Optimization of a Fabry-Perot Sensing Interferometer Design for an Optical Fiber Sensor of Hematocrit Level. Acta Phys. Pol. A 2013, 124, 586–588. [Google Scholar] [CrossRef]
- Jędrzejewska-Szczerska, M. Response of a New Low-Coherence Fabry-Perot Sensor to Hematocrit Levels in Human Blood. Sensors 2014, 14, 6965–6976. [Google Scholar] [CrossRef] [PubMed]
- Milewska, D.; Karpienko, K.; Jędrzejewska-Szczerska, M. Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor. Diam. Relat. Mater. 2016, 64, 169–176. [Google Scholar] [CrossRef]
- Majchrowicz, D.; Hirsch, M.; Wierzba, P.; Bechelany, M.; Viter, R.; Jędrzejewska-Szczerska, M. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers. Sensors 2016, 16, 416. [Google Scholar] [CrossRef] [PubMed]
- Majchrowicz, D.; Hirsch, M. Fiber optic low-coherence Fabry-Pérot interferometer with ZnO layers in transmission and reflective mode: Comparative study. Proc. SPIE 2016, 9917, 99171C. [Google Scholar]
- Leskelä, M.; Ritala, M. Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges. Angew. Chem. Int. Ed. 2003, 42, 5548–5554. [Google Scholar] [CrossRef] [PubMed]
- Auth, C.; Allen, C.; Blattner, A.; Bergstrom, D.; Brazier, M.; Bost, M.; Buehler, M.; Chikarmane, V.; Ghani, T.; Glassman, T.; et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In Proceedings of the 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 131–132.
- Dingemans, G.; Kessels, W.M.M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 2012, 30, 40802. [Google Scholar] [CrossRef]
- Jędrzejewska-Szczerska, M.; Wierzba, P.; Chaaya, A.A.; Bechelany, M.; Miele, P.; Viter, R.; Mazikowski, A.; Karpienko, K.; Wróbel, M. ALD thin ZnO layer as an active medium in a fiber-optic Fabry–Perot interferometer. Sens. Actuators A Phys. 2015, 221, 88–94. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.J.; Verheijen, M.A.; Bol, A.A.; Kessels, W.M.M. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition. Nanotechnology 2015, 26, 94002. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.J.; Mackus, A.J.M.; Verheijen, M.A.; van der Marel, C.; Kessels, W.M.M. Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition. Chem. Mater. 2012, 24, 2973–2977. [Google Scholar] [CrossRef]
- Chaaya, A.A.; Viter, R.; Baleviciute, I.; Bechelany, M.; Ramanavicius, A.; Gertnere, Z.; Erts, D.; Smyntyna, V.; Miele, P. Tuning Optical Properties of Al2O3/ZnO Nanolaminates Synthesized by Atomic Layer Deposition. J. Phys. Chem. C 2014, 118, 3811–3819. [Google Scholar] [CrossRef]
- Snure, M.; Paduano, Q.; Hamilton, M.; Shoaf, J.; Mann, J.M. Optical characterization of nanocrystalline boron nitride thin films grown by atomic layer deposition. Thin Solid Films 2014, 571, 51–55. [Google Scholar] [CrossRef]
- Boudiombo, J.; Boudrioua, A.; Loulergue, J.C.; Malhouitre, S.; Machet, J. Optical waveguiding properties and refractive index analysis of boron nitride (BN) thin films prepared by reactive ion plating. Opt. Mater. 1998, 10, 143–153. [Google Scholar] [CrossRef]
- López, J.; Martínez, J.; Abundiz, N.; Domínguez, D.; Murillo, E.; Castillón, F.F.; Machorro, R.; Farías, M.H.; Tiznado, H. Thickness effect on the optical and morphological properties in Al2O3/ZnO nanolaminate thin films prepared by atomic layer deposition. Superlattices Microstruct. 2016, 90, 265–273. [Google Scholar] [CrossRef]
- Wierzba, P.; Jędrzejewska-Szczerska, M. Spectral reflectance modeling of ZnO layers made with Atomic Layer Deposition for application in optical fiber Fabry-Perot interferometric sensors. Proc. SPIE 2015, 9448, 944819. [Google Scholar]
- Wang, Z.-Y.; Zhang, R.-J.; Lu, H.-L.; Chen, X.; Sun, Y.; Zhang, Y.; Wei, Y.-F.; Xu, J.-P.; Wang, S.-Y.; Zheng, Y.-X.; et al. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition. Nanoscale Res. Lett. 2015, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Wiedmann, M.K.; Winter, C.H.; Avrutsky, I. Optical properties of Al2O3 thin films grown by atomic layer deposition. Appl. Opt. 2009, 48, 5407–5412. [Google Scholar] [CrossRef] [PubMed]
- Kasikov, A.; Aarik, J.; Mändar, H.; Moppel, M.; Pärs, M.; Uustare, T. Refractive index gradients in TiO2 thin films grown by atomic layer deposition. J. Phys. Appl. Phys. 2006, 39, 54–60. [Google Scholar] [CrossRef]
- Refractive Index of Al2O3 (Aluminium Oxide, Sapphire)—Kischkat. Available online: http://refractiveindex.info/?shelf=main&book=Al2O3&page=Kischkat (accessed on 23 September 2016).
- Refractive Index of TiO2 (Titanium Dioxide)—Devore-o. Available online: http://refractiveindex.info/?shelf=main&book=TiO2&page=Devore-o (accessed on 23 September 2016).
- Schlicht, S.; Assaud, L.; Hansen, M.; Licklederer, M.; Bechelany, M.; Perner, M.; Bachmann, J. An electrochemically functional layer of hydrogenase extract on an electrode of large and tunable specific surface area. J. Mater. Chem. A 2016, 4, 6487–6494. [Google Scholar] [CrossRef]
- Profijt, H.B.; van de Sanden, M.C.M.; Kessels, W.M.M. Substrate Biasing during Plasma-Assisted ALD for Crystalline Phase-Control of TiO2 Thin Films. Electrochem. Solid-State Lett. 2011, 15, G1–G3. [Google Scholar] [CrossRef]
- Xie, Q.; Jiang, Y.-L.; Detavernier, C.; Deduytsche, D.; Van Meirhaeghe, R.L.; Ru, G.-P.; Li, B.-Z.; Qu, X.-P. Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O. J. Appl. Phys. 2007, 102, 83521. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, W.-D.; Kim, K.-M.; Hwang, C.S.; Jeong, J. High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition. Appl. Phys. Lett. 2004, 85, 4112–4114. [Google Scholar] [CrossRef]
- Triani, G.; Evans, P.J.; Mitchell, D.R.G.; Attard, D.J.; Finnie, K.S.; James, M.; Hanley, T.; Latella, B.; Prince, K.E.; Bartlett, J. Atomic layer deposition of TiO2/Al2O3 films for optical applications. Proc. SPIE 2005, 5870, 587009. [Google Scholar]
λ (nm) | RTiO2 | RAl2O3 |
---|---|---|
900 | 0.3769, t = 80 nm | 0.1258, t = 120 nm |
1300 | 0.3679, t = 120 nm | 0.1226, t = 170 nm |
1550 | 0.3663, t = 220 nm | 0.1225, t = 220 nm |
Fabry-Pérot Interferometer Made by | Length of the Fabry-Pérot Cavity | Central Wavelength of Light Source 1290 nm | Central Wavelength of Light Source 1550 nm |
---|---|---|---|
Optical fiber | 100 μm | 0.75 | 0.70 |
200 μm | 0.96 | 0.95 | |
400 μm | 0.77 | 0.87 | |
Optical fiber with TiO2 thin film | 50 μm | 0.89 | 0.84 |
100 μm | 0.99 | 0.98 | |
200 μm | 0.8 | 0.88 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirsch, M.; Majchrowicz, D.; Wierzba, P.; Weber, M.; Bechelany, M.; Jędrzejewska-Szczerska, M. Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors. Sensors 2017, 17, 261. https://doi.org/10.3390/s17020261
Hirsch M, Majchrowicz D, Wierzba P, Weber M, Bechelany M, Jędrzejewska-Szczerska M. Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors. Sensors. 2017; 17(2):261. https://doi.org/10.3390/s17020261
Chicago/Turabian StyleHirsch, Marzena, Daria Majchrowicz, Paweł Wierzba, Matthieu Weber, Mikhael Bechelany, and Małgorzata Jędrzejewska-Szczerska. 2017. "Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors" Sensors 17, no. 2: 261. https://doi.org/10.3390/s17020261
APA StyleHirsch, M., Majchrowicz, D., Wierzba, P., Weber, M., Bechelany, M., & Jędrzejewska-Szczerska, M. (2017). Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors. Sensors, 17(2), 261. https://doi.org/10.3390/s17020261