Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data
2.2.1. Grassland Active Fire Data
2.2.2. Climate Data
2.2.3. Land Use Data
2.3. Methods
2.3.1. Extraction of Grassland Active Fire Data
2.3.2. Establishment of Fire Climate Model
2.3.3. Accuracy Assessment of the Model
2.3.4. Classification of Fire Climate Zones
3. Results
3.1. Distribution of Active Fires
3.2. Fire Climate Index Model
3.3. The Fire Climate Zones of The Grassland
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Johnston, F.H.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.D.; Krawchuk, M.A.; Groot, W.J.D.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Finch, J.; Marchant, R. A palaeoecological investigation into the role of fire and human activity in the development of montane grasslands in East Africa. Veg. Hist. Archaeobotany 2011, 20, 109–124. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Bemmerzouk, A.M.; Mitsopoulos, I.D. Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorol. Appl. 2011, 18, 83–93. [Google Scholar] [CrossRef]
- Hantson, S.; Padilla, M.; Corti, D. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens. Environ. 2013, 131, 152–159. [Google Scholar] [CrossRef]
- Liu, X.Y.; Long, R.J.; Shang, Z.H. Study on Grassland Ecosystem Service Function and Its Valuation Method. J. Anim. Sci. Vet. Med. 2011, 20, 167–174. [Google Scholar]
- Liu, X.; Zhang, J.; Cai, W. Information diffusion-based spatio-temporal risk analysis of grassland fire disaster in northern China. Knowl.-Based Syst. 2010, 23, 53–60. [Google Scholar] [CrossRef]
- Beverly, J.L.; Martell, D.L. Characterizing extreme fire and weather events in the Boreal Shield ecozone of Ontario. Agric. For. Meteorol. 2005, 133, 5–16. [Google Scholar] [CrossRef]
- Duffy, P.A.; Walsh, J.E.; Graham, J.M.; Mann, D.H.; Rupp, T.S. Impacts of large-scale atmospheric-ocean variability on Alaskan fire season severity. Ecol. Appl. 2005, 15, 1317–1330. [Google Scholar] [CrossRef]
- Whitlock, C.; Shafer, S.L.; Marlon, J. The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management. For. Ecol. Manag. 2003, 178, 5–21. [Google Scholar] [CrossRef]
- Nunes, A.N. Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl. Geogr. 2012, 34, 576–586. [Google Scholar] [CrossRef]
- Viegas, D.X.; Piñol, J.; Viegas, M.T.; Ogaya, R. Estimating live fine fuel moisture content using meteorologically-based indices. Int. J. Wildland Fire 2001, 10, 223–240. [Google Scholar] [CrossRef]
- Pausas, J.G. Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Giuseppe, A.; João, R.M.; Marco, T.; Raffaella, L. Assessing long-term fire risk at local scale by means of decision tree technique. J. Geophys. Res. 2006, 111, 979–982. [Google Scholar]
- Meunier, J.; Romme, W.H.; Brown, P.M. Climate and land-use effects on wildfire in northern Mexico, 1650–2010. For. Ecol. Manag. 2014, 325, 49–59. [Google Scholar] [CrossRef]
- Iniguez, J.M.; Swetnam, T.W.; Baisan, C.H. Spatially and temporally variable fire regime on Rincon Peak, Arizona, USA. Fire Ecol. 2009, 5, 3–21. [Google Scholar] [CrossRef]
- Ireland, K.B.; Stan, A.B.; Fulé, P.Z. Bottom-up control of a northern Arizona ponderosa pine forest fire regime in a fragmented landscape. Landsc. Ecol. 2012, 27, 983–997. [Google Scholar] [CrossRef]
- Snyman, H.A. Estimating the short-term impact of fire on rangeland productivity in a semi-arid climate of South Africa. J. Arid Environ. 2004, 59, 685–697. [Google Scholar] [CrossRef]
- Sheuyange, A.; Oba, G.; Weladji, R.B. Effects of anthropogenic fire history on savanna vegetation in northeastern Namibia. J. Environ. Manag. 2005, 75, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.W.; Zhang, Z.S. Grass fire burning, fire behavior and fire climate. Chin. Grassl. 1996, 3, 74–77. [Google Scholar]
- Fu, Z.Q.; Yang, Y.X.; Dai, E.F. Study on Dynamics of Dry-grassland Fire and Regionalization of Fire Risk in Inner. China J. Agric. Resour. Reg. Plan. 2001, 22, 18–22. [Google Scholar]
- Guo, Z.; Fang, W.; Tan, J.; Shi, X. A Time-Dependent Stochastic Grassland Fire Ignition Probability Model for Hulun Buir Grassland of China. Chin. Geogr. Sci. 2013, 23, 445–459. [Google Scholar] [CrossRef]
- Irvine, D.J.; Mccluskey, J.A.; Robinson, I.M. Fire hazards and some common polymers. Polym. Degrad. Stab. 2000, 67, 383–396. [Google Scholar] [CrossRef]
- Tang, L.H.; Fang, L.M.; Xia, K.; Xu, A.J. Forest fire rating system indicated by human activities based on spatial analysis of GIS. J. Zhejiang For. Sci. Technol. 2007, 27, 42–46. [Google Scholar]
- Snyder, R.L.; Spano, D.; Duce, P.; Baldocchi, D.; Xu, L. A fuel dryness index for grassland fire-danger assessment. Agric. For. Meteorol. 2006, 139, 1–11. [Google Scholar] [CrossRef]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Trouet, V.; Taylor, A.H.; Wahl, E.R.; Skinner, C.N.; Stephens, S.L. Fire-climate interactions in the American West since 1400 CE. Geophys. Res. Lett. 2010, 37, 90–98. [Google Scholar] [CrossRef]
- Westerling, A.L.; Gershunov, A.; Brown, T.J.; Cayan, D.R.; Dettinger, M.D. Climate and Wildfire in the Western United States. Bull. Am. Meteorol. Soc. 2010, 84, 595–604. [Google Scholar] [CrossRef]
- Fu, Z. Research on Fire-risk Climate Zoning and Fire Management Measures on Grasslands in Inner Mongolia. J. Catastrophol. 2001, 16, 19–22. [Google Scholar]
- Liu, Z.; Wimberly, M.C. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States. PLoS ONE 2015, 10, e0140839. [Google Scholar] [CrossRef] [PubMed]
- Bradstock, R.A.; Cohn, J.S.; Gill, A.M.; Bedward, M.; Lucas, C. Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather. Int. J. Wildland Fire 2010, 18, 932–943. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Mollicone, D.; Eva, H.D.; Achard, F. Ecology: Human role in Russian wild fires. Nature 2006, 440, 436–437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Shu, L.F.; Tian, X.R. A Review of Studies on Climate Change and Forest Fire. For. Fire Prev. 2005, 4, 19–21. [Google Scholar]
- Finney, M.A.; Seli, R.C.; Mchugh, C.W.; Ager, A.A.; Bahro, B.; Agee, J.K. Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int. J. Wildland Fire 2007, 16, 712–727. [Google Scholar] [CrossRef]
- Wotton, B.M.; Gumpertz, M. Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ. Ecol. Stat. 2009, 16, 107–131. [Google Scholar] [CrossRef]
- Fraser, R.H.; Li, Z. Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sens. Environ. 2002, 82, 95–110. [Google Scholar] [CrossRef]
- Chu, P.S.; Yan, W.; Fujioka, F. Fire-climate relationships and long-lead seasonal wildfire prediction for Hawaii. Int. J. Wildland Fire 2002, 11, 25–31. [Google Scholar] [CrossRef]
- Hoinka, K.P.; Carvalho, A.; Miranda, A.I. Regional-scale weather pattern and wildland fires in Central Portugal. Int. J. Wildland Fire 2009, 18, 36–49. [Google Scholar] [CrossRef]
- Liu, Z.; Wimberly, M.C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 2016, 542, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Riley, K.L.; Loehman, R.A. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States. Ecosphere 2016, 7, e01543. [Google Scholar] [CrossRef]
- Bigio, E.R.; Swetnam, T.W.; Baisan, C.H. Local-scale and regional climate controls on historical fire regimes in the San Juan Mountains, Colorado. For. Ecol. Manag. 2016, 360, 311–322. [Google Scholar] [CrossRef]
- Curt, T.; Borgniet, L.; Ibanez, T.; Moron, V.; Hély, C. Understanding fire patterns and fire drivers for setting a sustainable management policy of the New-Caledonian biodiversity hotspot. For. Ecol. Manag. 2015, 337, 48–60. [Google Scholar] [CrossRef]
- LAADS. Available online: https://ladsweb.nascom.nasa.gov/ (accessed on 14 March 2017).
- Open Spatial Data Sharing Project RADI. Available online: http://ids.ceode.ac.cn/ (accessed on 14 March 2017).
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Zou, H.X.; Qin, F.; Cheng, Z.K.; Wang, X.Y. Algorithm for Generating ROC Curve of Two-Classifier. Comput. Technol. Dev. 2009, 19, 109–112. [Google Scholar]
- Jian, W.; Song, W.; Zheng, H.; Telesca, L.; Lasaponara, R. Temporal scaling behavior of human-caused fires and their connection to relative humidity of the atmosphere. Ecol. Model. 2010, 221, 85–89. [Google Scholar]
- Zhang, Z.X.; Zhang, H.Y.; Zhou, D.W. Using GIS spatial analysis and logistic regression to predict the probabilities of human-caused grassland fires. J. Arid Environ. 2010, 74, 386–393. [Google Scholar] [CrossRef]
- Hamilton, L.C.; Hartter, J.; Keim, B.D. Wildfire, climate, and perceptions in Northeast Oregon. Reg. Environ. Chang. 2016, 16, 1819–1832. [Google Scholar] [CrossRef]
- Goff, H.L.; Flannigan, M.D.; Bergeron, Y. Potential changes in monthly fire risk in the eastern Canadian boreal forest under future climate change. Can. J. For. Res. 2009, 39, 2369–2380. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Zhang, H.Y.; Li, D.X.; Xu, J.; Zhou, D. Spatial distribution pattern of human-caused fires in Hulun Buir grassland. Acta Ecol. Sin. 2013, 33, 2023–2031. [Google Scholar] [CrossRef]
- Amatulli, G.; Peréz-Cabello, F.; Riva, J.D.L. Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol. Model. 2007, 200, 321–333. [Google Scholar] [CrossRef]
Class | Meaning |
---|---|
0 | Not processed (missing input data) |
2 | Not processed (other reason) |
3 | Water |
4 | Cloud |
5 | Non-fire clear land |
6 | Unknown |
7 | Low-confidence fire |
8 | Nominal-confidence fire |
9 | High-confidence fire |
Year/Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 0 | 0 | 91 | 198 | 55 | 187 | 93 | 29 | 191 | 61 | 8 | 0 |
2001 | 0 | 1 | 49 | 71 | 6 | 4 | 2 | 3 | 53 | 5 | 12 | 0 |
2002 | 0 | 16 | 46 | 17 | 9 | 14 | 6 | 43 | 49 | 29 | 70 | 0 |
2003 | 0 | 15 | 284 | 83 | 289 | 53 | 5 | 0 | 1 | 3 | 0 | 0 |
2004 | 0 | 0 | 7 | 38 | 5 | 8 | 14 | 34 | 9 | 14 | 8 | 1 |
2005 | 0 | 0 | 82 | 30 | 11 | 17 | 3 | 34 | 171 | 24 | 0 | 0 |
2006 | 0 | 0 | 15 | 93 | 110 | 9 | 1 | 6 | 117 | 12 | 1 | 0 |
2007 | 1 | 22 | 19 | 131 | 12 | 6 | 1 | 42 | 59 | 3 | 0 | 9 |
2008 | 0 | 16 | 274 | 58 | 15 | 5 | 1 | 7 | 25 | 5 | 23 | 0 |
2009 | 0 | 0 | 0 | 94 | 29 | 0 | 2 | 1 | 38 | 59 | 6 | 0 |
2010 | 0 | 0 | 1 | 50 | 28 | 11 | 5 | 9 | 61 | 105 | 16 | 0 |
2011 | 0 | 0 | 1 | 171 | 6 | 3 | 15 | 40 | 24 | 1 | 1 | 0 |
2012 | 1 | 2 | 74 | 44 | 27 | 3 | 1 | 15 | 21 | 6 | 9 | 0 |
2013 | 0 | 0 | 0 | 48 | 75 | 2 | 2 | 1 | 94 | 97 | 29 | 0 |
2014 | 0 | 1 | 64 | 135 | 12 | 5 | 3 | 10 | 204 | 44 | 2 | 0 |
Variable | N | Pearson Correlation | Significant Test |
---|---|---|---|
Number of fire occurrences & Fire climate index | 156 | 0.578 * | 0.000 |
Extremely Low Fire Climate Index Zone (%) | Low Fire Climate Index Zone (%) | Medium Fire Climate Index Zone (%) | High Fire Climate Index Zone (%) | Extremely High Fire Climate Index Zone (%) | |
---|---|---|---|---|---|
January | 100 | 0.00 | 0.00 | 0.00 | 0.00 |
February | 100 | 0.00 | 0.00 | 0.00 | 0.00 |
March | 4.21 | 21.40 | 57.10 | 17.30 | 0.00 |
April | 0.00 | 1.34 | 24.79 | 41.98 | 31.89 |
May | 0.00 | 0.00 | 6.71 | 50.44 | 42.85 |
June | 0.00 | 49.33 | 30.55 | 12.24 | 7.88 |
July | 20.31 | 47.13 | 25.88 | 6.69 | 0.00 |
August | 8.92 | 33.54 | 35.48 | 22.06 | 0.00 |
September | 0.00 | 0.00 | 5.88 | 53.32 | 40.80 |
October | 0.00 | 3.16 | 31.49 | 50.89 | 14.46 |
November | 93.20 | 6.80 | 0.00 | 0.00 | 0.00 |
December | 100 | 0.00 | 0.00 | 0.00 | 0.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhao, J.; Guo, X.; Zhang, Z.; Tan, G.; Yang, J. Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China. Sensors 2017, 17, 616. https://doi.org/10.3390/s17030616
Liu M, Zhao J, Guo X, Zhang Z, Tan G, Yang J. Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China. Sensors. 2017; 17(3):616. https://doi.org/10.3390/s17030616
Chicago/Turabian StyleLiu, Meifang, Jianjun Zhao, Xiaoyi Guo, Zhengxiang Zhang, Gang Tan, and Jihong Yang. 2017. "Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China" Sensors 17, no. 3: 616. https://doi.org/10.3390/s17030616
APA StyleLiu, M., Zhao, J., Guo, X., Zhang, Z., Tan, G., & Yang, J. (2017). Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China. Sensors, 17(3), 616. https://doi.org/10.3390/s17030616