Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Object Selection and Location
2.3. Image Acquisition and Post Processing
2.4. Panorama Creation
2.5. Additional Input Data for the Web-Portal
2.6. General Guidelines
- Selection of a study area and objects for representation
- Acquisition of permissions for objects acquisition
- Selection of the acquisition technology
- Image acquisition, image post-processing, and image refinement
- Panorama stitching and rendering (if spherical or cylindrical panoramas are used)
- Software selection for virtual representation
- Map creation and adjustment for their visualization in different resolutions and browsers
- Selection of additional information for multimedia representation (GNSS objects coordinates, frame images, video, sound, etc.)
- Selecting and experimenting with different options for their better visualization
- Design of user friendly interface of the application
- Testing the performance of the created web (or offline working) application until approval
3. Results
4. Discussion
4.1. Selection of Objects of Interest
4.2. Selection of Appropriate Equipment and Data Processing Tools
4.3. Web Portal
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Campanaro, D.M.; Landeschi, G.; Dell’Unto, N.; Touati, A.M.L. 3D GIS for cultural heritage restoration: A ‘white box’ workflow. J. Cult. Herit. 2016, 18, 321–332. [Google Scholar] [CrossRef]
- Remondino, F. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef]
- Barber, D.; Mills, J.; Bryan, P. Laser scanning and photogrammetry: 21st Century metrology. In Proceedings of the XVIII International CIPA Symposium on Surveying and Documentation of Historic Buildings, Monuments, Sites: Traditional and Modern Methods, Potsdam, Germany, 18–21 September 2001. [Google Scholar]
- Beraldin, J.A.; Picard, M.; El-Hakim, S.F.; Godin, G.; Valzano, V.; Bandiera, A. Combining 3D technologies for cultural heritage interpretation and entertainment. In Electronic Imaging; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; pp. 108–118. [Google Scholar]
- Akca, D.; Remondino, F.; Novak, D.; Hanusch, T.; Schrotter, G.; Gruen, A. Recording and modelling of cultural heritage objects with coded structured light projection systems. In Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, Rome, Italy, 4–7 December 2006; pp. 375–382. [Google Scholar]
- Remondino, F.; Girardi, S.; Gonzo, L.; Rizzi, A. Multiresolution modeling of complex and detailed cultural heritage. In Proceedings of the 9th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST 2008), Braga, Portugal, 2–5 December 2008; pp. 1–8. [Google Scholar]
- Fowles, P.S.; Larson, J.H.; Dean, C.; Solajic, M. The laser recording and virtual restoration of a wooden sculpture of Buddha. J. Cult. Herit. 2003, 4, 367–371. [Google Scholar] [CrossRef]
- Remondino, F.; Rizzi, A.; Agugiaro, G.; Girardi, S.; De Amicis, R.; Magliocchetti, D.; Girardi, G.; Baratti, G. Geomatics and geoinformatics for digital 3D documentation, fruition and valorization of cultural heritage. In Proceedings of the EUROMED 2010 Workshop on Museum Futures: Emerging Technological and Social Paradigms, Lemessos, Cyprus, 8–13 November 2010; pp. 8–13. [Google Scholar]
- Remondino, F.; El-Hakim, S. Image-based 3D modeling: A review. Photogramm. Rec. 2006, 21, 269–291. [Google Scholar] [CrossRef]
- Hanan, H.; Suwardhi, D.; Nurhasanah, T.; Santa Bukit, E. Batak Toba cultural heritage and close-range photogrammetry. Procedia Soc. Behav. Sci. 2015, 184, 187–195. [Google Scholar] [CrossRef]
- Sužiedelytė-Visockienė, J.; Bagdžiūnaitė, R.; Malys, N.; Maliene, V. Close-range photogrammetry enables documentation of environment-induced deformation of architectural heritage. Environ. Eng. Manag. J. 2015, 14, 1371–1381. [Google Scholar]
- Meyer, D.; Fraijo, E.; Lo, E.; Rissolo, D.; Kuester, F. Optimizing UAV systems for rapid survey and reconstruction of large scale cultural heritage sites. Proceedings of Digital Heritage, Granada, Spain, 28 September–2 October 2015. [Google Scholar]
- Themistocleous, K.; Ioannides, M.; Agapiou, A.; Hadjimitsis, D.G. The methodology of documenting cultural heritage sites using photogrammetry, UAV, and 3D printing techniques: The case study of Asinou church in Cyprus. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 16–19 March 2015. [Google Scholar]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R. Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef]
- Nister, D. Automatic passive recovery of 3D from images and video. In Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, Thessaloniki, Greece, 6–9 September 2004; pp. 438–445. [Google Scholar]
- Pollefeys, M.; Van Gool, L.; Vergauwen, M.; Verbiest, F.; Cornelis, K.; Tops, J.; Koch, R. Visual modeling with a hand-held camera. Int. J. Comput. Vision 2004, 59, 207–232. [Google Scholar] [CrossRef]
- Yastikli, N. Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 2007, 8, 423–427. [Google Scholar] [CrossRef]
- Serna, C.G.; Pillay, R.; Trémeau, A. Data fusion of objects using techniques such as Laser Scanning, Structured Light and Photogrammetry for Cultural Heritage Applications. In Computational Color Imaging; Springer International Publishing: Basel, Switzerland, 2015; pp. 208–224. [Google Scholar]
- Markiewicz, J.S.; Podlasiak, P.; Zawieska, D. A new approach to the generation of orthoimages of cultural heritage objects—integrating TLS and image data. Remote Sens. 2015, 7, 16963–16985. [Google Scholar] [CrossRef]
- Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F. State of the art in high density image matching. Photogramm. Rec. 2014, 29, 144–166. [Google Scholar] [CrossRef]
- Rinaudo, F.; Chiabrando, F.; Nex, F.; Piatti, D. New instruments and technologies for cultural heritage survey: Full integration between point clouds and digital photogrammetry. In Digital Heritage; Springer: Berlin/Heidelberg, Germany, 2010; pp. 56–70. [Google Scholar]
- Akbarzadeh, A.; Frahm, J.M.; Mordohai, P.; Clipp, B.; Engels, C.; Gallup, D.; Wang, L. Towards urban 3D reconstruction from video. In Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, NC, USA, 14–16 June 2006. [Google Scholar]
- Förstner, W. Computer Vision and Photogrammetry—Mutual Questions: Geometry, Statistics and Cognition. In Bildteknik/Image Science, Swedish Society for Photogrammetry and Remote Sensing; 2002; pp. 151–164. [Google Scholar]
- Musialski, P.; Wonka, P.; Aliaga, D.G.; Wimmer, M.; Gool, L.; Purgathofer, W. A survey of urban reconstruction. Comput. Graph. Forum 2013, 32, 146–177. [Google Scholar] [CrossRef]
- Lisini, G.; Tison, C.; Tupin, F.; Gamba, P. Feature fusion to improve road network extraction in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 217–221. [Google Scholar] [CrossRef]
- Teo, T.A.; Rau, J.Y.; Chen, L.C.; Liu, J.K.; Hsu, W.C. Reconstruction of complex buildings using LIDAR and 2D maps. In Innovations in 3D Geo Information Systems (Lecture Notes in Geoinformation and Cartography); Springer: Berlin/Heidelberg, Germany, 2006; pp. 345–354. [Google Scholar]
- Roenholm, P.; Honkavaara, E.; Litkey, P.; Hyyppä, H.; Hyyppä, J. Integration of laser scanning and photogrammetry. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; pp. 355–362. [Google Scholar]
- Stamos, I.; Liu, L.; Chen, C.; Wolberg, G.; Yu, G.; Zokai, S. Integrating automated range registration with multiview geometry for the photorealistic modelling of large-scale scenes. Int. J. Comput. Vis. 2008, 78, 237–260. [Google Scholar] [CrossRef]
- Gonzalez-Aguilera, D.; Muñoz-Nieto, A.; Rodriguez-Gonzalvez, P.; Menéndez, M. New tools for rock art modelling: Automated sensor integration in Pindal Cave. J. Archaeol. Sci. 2011, 38, 120–128. [Google Scholar] [CrossRef]
- Kim, H.; Sarim, M.; Takai, T.; Guillemaut, J.Y.; Hilton, A. Dynamic 3D scene reconstruction in outdoor environments. In Proceedings of the IEEE Symposium on 3D Data Processing and Visualization, Paris, France, 17–20 May 2010. [Google Scholar]
- Kim, H.; Hilton, A. 3D scene reconstruction from multiple spherical stereo pairs. Int. J. Comput. Vision 2013, 104, 94–116. [Google Scholar] [CrossRef]
- Luhmann, T.; Tecklenburg, W. 3-D object reconstruction from multiple-station panorama imagery. ISPRS Arch. 2004, 34, 8. [Google Scholar]
- Parian, J.A.; Gruen, A. An advanced sensor model for panoramic cameras. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; pp. 24–29. [Google Scholar]
- Schneider, D.; Maas, H.G. Development and application of an extended geometric model for high resolution panoramic cameras. In Proceedings of the XXth ISPRS Congress, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Schneider, D.; Maas, H.G. Combined bundle adjustment of panoramic and central perspective images. ISPRS Arch. 2005, 36, 4. [Google Scholar]
- Barazzetti, L.; Fangi, G.; Remondino, F.; Scaioni, M. Automation in multi-image spherical photogrammetry for 3D architectural reconstructions. In Proceedings of the 11th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST), Paris, France, 21–24 September 2010. [Google Scholar]
- Fangi, G. Investigation on the suitability of the spherical panoramas by Realviz Stitcher for metric purposes. ISPRS Arch. 2006, 5, 372–376. [Google Scholar]
- Fangi, G.; Clini, P.; Fiori, F. Simple and quick digital technique for the safeguard of Cultural Heritage. The Rustem Pasha Mosque in Istanbul. In Proceedings of the Digital Media and its Application in Cultural Heritage, Amman, Jordan, 5–6 November 2008; pp. 209–217. [Google Scholar]
- Fangi, G. Further developments of the spherical photogrammetry for cultural heritage. In Proceedings of the XXII CIPA Symposium, Kyoto, Japan, 11–15 October 2009; pp. 11–15. [Google Scholar]
- Fangi, G. The multi-image spherical panoramas as a tool for architectural survey. In Proceedings of the 21st CIPA symposium, Athens, Greece, 1–6 October 2007. [Google Scholar]
- Guarnieri, A.; Vettore, A.; Remondino, F.; Church, O.P. Photogrammetry and ground-based laser scanning: Assessment of metric accuracy of the 3D model of Pozzoveggiani church. In Proceedings of the Fig Working Week: The Olympic Spirit of Surveying, Athens, Greece, 22–27 May 2004. [Google Scholar]
- Pensieri, C.; Pennacchini, M. Virtual reality in medicine. In Handbook on 3D3C Platforms; Springer International Publishing: Basel, Switzerland, 2016; pp. 353–401. [Google Scholar]
- Portman, M.E.; Natapov, A.; Fisher-Gewirtzman, D. To go where no man has gone before: Virtual reality in architecture, landscape architecture and environmental planning. Comput. Environ. Urban Syst. 2015, 54, 376–384. [Google Scholar] [CrossRef]
- Ong, S.K.; Nee, A.Y.C. Virtual and Augmented Reality Applications in Manufacturing; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Kaimaris, D.; Stylianidis, E.; Karanikolas, N. Virtual reality: Developing a VR space for academic activities. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2014, 2, 197–201. [Google Scholar] [CrossRef]
- Guarnieri, A.; Pirotti, F.; Vettore, A. An open source application for interactive exploration of cultural heritage 3D models on the web. In Proceedings of the 3D Virtual Reconstruction and Visualization of Complex Architectures, Trento, Italy, 25–28 February 2009. [Google Scholar]
- Guarnieri, A.; PirDotti, F.; Vettore, A. Cultural heritage interactive 3D models on the web: An approach using open source and free software. J. Cult. Herit. 2010, 11, 350–353. [Google Scholar] [CrossRef]
- Maldzanski, P. Development of Methods for Capturing and Processing Data in Architectural Photogrammetry; UACEG: Sofia, Bulgaria, 2012; (source in Bulgarian). [Google Scholar]
- Koeva, M. 3D Modelling in Architectural Photogrammetry; UACG: Sofia, Bulgaria, 2015; (source in Bulgarian). [Google Scholar]
- Koeva, M.N. 3D modelling and interactive web-based visualization of cultural heritage objects. In Proceedings of the Conference ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Lausanne, Switzerland, 10–12 February 2016. [Google Scholar]
- Gaitatzes, A.; Christopoulos, D.; Roussou, M. Reviving the past: Cultural heritage meets virtual reality. In Proceedings of the Conference on Virtual Reality, Archeology, and Cultural Heritage, Athens, Greece, 28–30 November 2001. [Google Scholar]
- Vlahakis, V.; Karigiannis, J.; Tsotros, M.; Gounaris, M.; Almeida, L.; Stricker, D.; Ioannidis, N. Archeoguide: first results of an augmented reality, mobile computing system in cultural heritage sites. In Proceedings of the Conference on Virtual Reality, Archeology, and Cultural Heritage, Athens, Greece, 28–30 November 2001. [Google Scholar]
- Bruno, F.; Bruno, S.; De Sensi, G.; Luchi, M.L.; Mancuso, S.; Muzzupappa, M. From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. J. Cult. Herit. 2010, 11, 42–49. [Google Scholar] [CrossRef]
- Kalay, Y.; Kvan, T.; Affleck, J. New Heritage: New Media and Cultural Heritage; Taylor & Francis: Park Drive, UK, 2007. [Google Scholar]
- Reffat, R.M.; Nofal, E.M. Effective Communication with Cultural Heritage using Virtual Technologies. In Proceedings of the XXIV International CIPA Symposium, Strasbourg, France, 2–6 September 2013. [Google Scholar]
- Zara, J. Virtual reality and cultural heritage on the web. In Proceedings of the 7th International Conference on Computer Graphics and Artificial Intelligence, Limoges, France, 12–13 May 2004. [Google Scholar]
- Hadjikolev, E.; Vragov, G.; Totkov, G.; Ivanova, K. Regatta–regional aggregator of heterogeneous cultural artefacts. In Review of the National Center for Digitization; Faculty of Mathematics: Belgrade, Serbia, 2012; pp. 8–18. [Google Scholar]
- Guarnaccia, M.; Gambino, O.; Pirrone, R.; Ardizzone, E. An Explorable Immersive Panorama. In Proceedings of the 6th International Conference on Complex, Intelligent and Software Intensive Systems, Palermo, Italy, 4–6 July 2012; pp. 130–134. [Google Scholar]
- Ippoliti, E.; Calvano, M.; Mores, L. 2.5 D/3D Models for the enhancement of architectural-urban heritage. A Virtual Tour of design of the Fascist headquarters in Littoria. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2014, 2, 189–196. [Google Scholar] [CrossRef]
- Louvre Virtual Museum. Available online: http://www.youvisit.com/tour/louvremuseum (accessed on 8 April 2017).
- Wahbeh, W. Architectural Digital Photogrammetry: Panoramic Image-Based Interactive Modelling. Ph.D. Thesis, Sapienza University of Rome, Rome, Italy, 2011. [Google Scholar]
- Snyder, J.P. Flattening the Earth: Two Thousand Years of Map Projections; The University of Chicago Press: Chicago, IL, USA, 1993; p. 384. [Google Scholar]
- Fangi, G.; Nardinocchi, C. Photogrammetric processing of spherical Panoramas. The Photogramm. Rec. 2013, 28, 293–311. [Google Scholar] [CrossRef]
- Highton, S. Virtual Reality Photography: Creating Panoramic and Object Images; Virtual Reality Photography: San Carlos, CA, USA, 2010. [Google Scholar]
- Easypano Holdings Inc. Available online: http://www.easypano.com/ (accessed on 8 April 2017).
- Zlateva, M.; Zlateva, A. Bulgarian Cultural Heritage: Interpretation and Presentation. Problems and Prospects. Available online: http://www.arcchip.cz/w05/w05_zlateva.pdf (accessed on 8 April 2017).
- Phase One. Capture One 7. Available online: https://www.phaseone.com/en/Products/Software/Capture-One-Pro/Highlights.aspx (accessed on 8 April 2017).
- Adobe Systems Incorporated. Adobe Photoshop CC. Available online: http://www.adobe.com/products/photoshop.html (accessed on 8 April 2017).
- New House Internet Services B.V. PTGui. Available online: https://www.ptgui.com (accessed on 8 April 2017).
- Virtual Tour Lovech. Available online: http://regtour.lovech.bg/lovech_eng/index.html (accessed on 8 April 2017).
- Fangi, G. Multi scale, multiresolution spherical photogrammetry with long focal lenses for architectural surveys. ISPRS Arch. 2010, 38, 1–6. [Google Scholar]
- Karras, G.E.; Patias, P.; Petsa, E. Digital monoplotting and photo-unwrapping of developable surfaces in architectural photogrammetry. Int. Arch. Photogramm. Remote Sens. 1996, 31, 290–294. [Google Scholar]
- D Print ProJet. Available online: http://www.3dprint-Bg.Com/Index.Php (accessed on 8 April 2017).
- Kersten, T.P.; Lindstaedt, M. Image-based low-cost systems for automatic 3D recording and modelling of archaeological finds and objects. In Progress in Cultural Heritage Preservation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–10. [Google Scholar]
- D’Annibale, E. Image Based Modeling from Spherical Photogrammetry and Structure for Motion. The Case of the Treasury, Nabatean Architecture in Petra. Geoinformatics FCE CTU 2011, 6, 62–73. [Google Scholar] [CrossRef]
- Groat, L.N.; Wang, D. Architectural Research Methods; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Brown, M.; Lowe, D.G. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 2007, 74, 59–73. [Google Scholar] [CrossRef]
- García-Gago, J.; González-Aguilera, D.; Gómez-Lahoz, J.; San José-Alonso, J.I. A photogrammetric and computer vision-based approach for automated 3D architectural modeling and its typological analysis. Remote Sens. 2014, 6, 5671–5691. [Google Scholar] [CrossRef]
- Shum, H.Y.; Szeliski, R. Creating full view panoramic image mosaics and environment maps. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 3–8 August 1997; pp. 251–258. [Google Scholar]
- Shum, H.Y.; Szeliski, R. Systems and Experiment Paper: Construction of Panoramic Image Mosaics with Global and Local Alignment. Int. J. Comput. Vision 2000, 36, 101–130. [Google Scholar] [CrossRef]
- Wahbeh, W. Architectural Digital Photogrammetry: Panoramic Image-Based Interactive Modelling. Ph.D. Thesis, University Sapienza of Rome, Rome, Italy, 2011. [Google Scholar]
- D’Annibale, E.; Fangi, G. Interactive modelling by projection of oriented spherical panorama. In Proceedings of the ISPRS International Workshop on 3D Virtual Reconstruction and Visualization of Comprex Architectures (3D-Arch’2009), Trento, Italy, 25–29 February 2009. [Google Scholar]
- Pramulyo, H.; Harto, A.B.; Mertotaroeno, S.H.; Murtiyoso, A. Towards better 3D model accuracy with spherical photogrammetry. In The Rise of Big Spatial Data; Springer International Publishing: Basel, Switzerland, 2017; pp. 107–120. [Google Scholar]
- Gledhill, D.; Tian, G.Y.; Taylor, D.; Clarke, D. Panoramic imaging—A review. Comput. Graph. 2003, 27, 435–445. [Google Scholar] [CrossRef]
- Nodal Ninja, 2005-2013, Fanotec Spherical Panoramic Tripod Head NN5 & NN5L Manual. Available online: http://www.nodalninja.com/manuals/nn5_user_manual.pdf (accessed on 8 April 2017).
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koeva, M.; Luleva, M.; Maldjanski, P. Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology. Sensors 2017, 17, 829. https://doi.org/10.3390/s17040829
Koeva M, Luleva M, Maldjanski P. Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology. Sensors. 2017; 17(4):829. https://doi.org/10.3390/s17040829
Chicago/Turabian StyleKoeva, Mila, Mila Luleva, and Plamen Maldjanski. 2017. "Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology" Sensors 17, no. 4: 829. https://doi.org/10.3390/s17040829
APA StyleKoeva, M., Luleva, M., & Maldjanski, P. (2017). Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology. Sensors, 17(4), 829. https://doi.org/10.3390/s17040829