Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation
Abstract
:1. Introduction
2. Principles of Gravity-Aided Navigation and Characteristic Analysis Method of a Marine Gravity Reference Map
2.1. Principles of Gravity-Aided Navigation
2.2. Characteristic Analysis of Marine Gravity Reference Map
3. Characteristics of the Marine Gravity Reference Map and the Location Accuracy of Gravity Matching
3.1. Marine Gravity Reference Map
3.2. Characteristic Value of the Marine Gravity Reference Map
3.3. Location Accuracy of Gravity Matching Based on Simulation Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moryl, J.; Rice, H.; Shinners, S. The Universal Gravity Module for Enhanced Submarine Navigation. In Proceedings of the IEEE Position Location and Navigation Symposium 1998, Palm Springs, CA, USA, 20–23 April 1998; pp. 324–331. [Google Scholar]
- Rice, H.; Kelmenson, S.; Mendelsohn, L. Geophysical Navigation Technologies and Applications. In Proceedings of the IEEE/ION Position Location and Navigation Symposium 2004, Monterey, CA, USA, 26–29 April 2004; pp. 618–624. [Google Scholar]
- Xu, Z.; Yan, L.; Ning, S.; Zou, H. Situation and development of marine gravity aided navigation system. Prog. Geophys. 2007, 22, 104–111. [Google Scholar]
- Zheng, T.; Cai, L.; Wang, Z.; Bian, S. Selection of matching area in terrain match aided navigation. J. Chin. Inert. Technol. 2009, 17, 191–196. [Google Scholar]
- Deng, Z.; Ge, Y.; Guan, W.; Han, K. Underwater map-matching aided inertial navigation system based on multi-geophysical information. Front. Electr. Electron. Eng. China 2010, 5, 496–500. [Google Scholar] [CrossRef]
- Ren, H.; Kazanzides, P. Investigation of attitude tracking using an integrated inertial and magnetic navigation system for hand-held surgical instruments. IEEE/ASME Trans. Mechatron. 2012, 17, 210–217. [Google Scholar] [CrossRef]
- Ma, X.; Fang, J.; Ning, X. An overview of the autonomous navigation for a gravity-assist interplanetary spacecraft. Prog. Aerosp. Sci. 2013, 63, 56–66. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, H.; Wu, L.; Cai, H.; Wang, Y. Simulation research on gravity-geomagnetism combined aided underwater navigation. J. Navig. 2013, 66, 83–98. [Google Scholar] [CrossRef]
- Wang, F.; Wen, X.; Sheng, D. Observability Analysis and Simulation of Passive Gravity Navigation System. J. Comput. 2013, 8, 248–255. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, J.H.; Yu, M. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation. Sensors 2015, 15, 16833–16847. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bian, S. A local geopotential model for implementation of underwater passive navigation. Prog. Nat. Sci. 2008, 18, 1139–1145. [Google Scholar] [CrossRef]
- Wu, L.; Ma, J.; Zhou, Y.; Tian, J. Modelling full-tensor gravity gradient maps for gravity matching navigation. J. Syst. Simul. 2009, 21, 7037–7041. [Google Scholar]
- Tong, Y.; Bian, S.; Jiang, D.; Xiang, C. Gravity matching aided navigation based on local continuous field. J. Chin. Inert. Technol. 2011, 6, 011. [Google Scholar]
- Liu, F.; Yao, J.; Jing, X.; Cheng, S. Applicability Study of Gravity Matching Algorithm for INS of Different Positioning Accuracy. Navig. Position. Timing 2015, 2, 25–33. [Google Scholar]
- Ma, Y.; OuYang, Y.; Huang, M.; Deng, K.; Qu, Z. Selection method for gravity-field matchable area based on information entropy of characteristic parameters. J. Chin. Inert. Technol. 2016, 24, 763–769. [Google Scholar]
- Li, K.; Xiong, L.; Cheng, L.; Ma, J. The Research of Matching Area Selection Criterion for Gravity Gradient Aided Navigation.Chinese. In Conference on Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2014; pp. 21–30. [Google Scholar]
- Wu, T.; Ou, Y.; Lu, X.; Huang, M.; Ma, F. Analysis on effecting mode of several essential factors to gravity aided navigation. J. Chin. Inert. Technol. 2011, 19, 559–564. [Google Scholar]
- Masiero, A.; Vettore, A. Improved Feature Matching for Mobile Devices with IMU. Sensors 2016, 16, 1243. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhu, Y.; Deng, Z.; Fu, M. The Gravity Matching Area Selection Criteria for Underwater Gravity-Aided Navigation Application Based on the Comprehensive Characteristic Parameter. IEEE/ASME Trans. Mechatron. 2016, 21, 2935–2943. [Google Scholar] [CrossRef]
- Yoo, Y.M.; Lee, W.H.; Lee, S.M.; Park, C.G.; Kwon, J.H. Improvement of TERCOM aided inertial navigation system by velocity correction. In Proceedings of the IEEE/ION Position Location and Navigation Symposium 2012, Myrtle Beach, SC, USA, 23–26 April 2012; pp. 1082–1087. [Google Scholar]
- Wang, Y.; Wen, C.; Zuo, Z.; Yang, J.; Guo, Z. Adaptive chaotic ant colony opotimization-RD based gravity matching aided navigation. Acta Phys. Sin. 2014, 63, 1–6. [Google Scholar]
- Gao, W.; Zhao, B.; Zhou, G.; Wang, Q.; Yu, C. Improved artificial bee colony algorithm based gravity matching navigation method. Sensors 2014, 14, 12968–12989. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, L.; Deng, Z.; Fu, M. A particle filter-based matching algorithm with gravity sample vector for underwater gravity aided navigation. IEEE/ASME Trans. Mechatron. 2016, 21, 1399–1408. [Google Scholar] [CrossRef]
- Han, Y.; Wang, B.; Deng, Z.; Fu, M. An Improved TERCOM-Based Algorithm for Gravity-Aided Navigation. IEEE Sens. J. 2016, 16, 2537–2544. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Fang, J.; Chai, H.; Zheng, H. Simulation research on a minimum root-mean-square error rotation-fitting algorithm for gravity matching navigation. Sci. China Earth Sci. 2012, 55, 90–97. [Google Scholar] [CrossRef]
- Kinsey, J.C.; Eustice, R.M.; Whitcomb, L.L. A survey of underwater vehicle navigation: Recent advances and new challenges. In Proceedings of the IFAC Conference of Manoeuvering and Control of Marine Craft, Lisbon, Portugal, 20–22 September 2006; Volume 88, pp. 1–12. [Google Scholar]
- Matsumoto, G.; Zhang, S. Gravity Measurement by Use of Deep Sea Submersibles. Mar. Geol. Lett. 2002, 18, 28–30. [Google Scholar]
- Air-Sea Gravity System II. Available online: http://www.microglacoste.com/airseafeatures.php (accessed on 1 June 2017).
- Ander, M.E.; Summers, T.; Gruchalla, M.E. LaCoste & Romberg gravity meter: System analysis and instrumental errors. Geophysics 1999, 64, 1708–1719. [Google Scholar]
- Cai, T.; Liu, M.; Huang, B. The gravity/inertial integrated navigation based on center differential Kalman filtering. Foreign Electron. Meas. Technol. 2013, 1, 011. [Google Scholar]
- Wu, L.; Wang, H.; Hsu, H.; Chai, H.; Wang, Y. Research on the Relative Positions-Constrained Pattern Matching Method for Underwater Gravity-Aided Inertial Navigation. J. Navig. 2015, 68, 937–950. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Yang, J.; Zhang, L. Selective criteria of characteristic area on geomagnetic map. J. Chin. Inert. Technol. 2008, 16, 694–698. [Google Scholar]
- Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 2014, 346, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Tian, X.; Liu, J.; Kong, S. Accuracy analysis of marine gravity data shared internationally. Sci. Surv. Mapp. 2016, 41, 14–18. [Google Scholar]
- Zhang, C.; Yuan, B.; Zhang, G. Quality Evaluation of Land Gravity Data in the Latest Global Gravity Database V23. Adv. Earth Sci. 2017, 32, 75–82. [Google Scholar]
- Kovrizhnykh, P.; Shagirov, B.; Yurist, S. Marine gravity survey at the Caspian with GT-2M, Chekan AM and L&R gravimeters: Comparison of accuracy. In Gravimetric Technologies; Moscow State University: Moscow, Russia, 2011. [Google Scholar]
- Krasnov, A.; Nesenyuk, L.P.; Peshekhonov, V.G. Integrated marine gravimetric system. Development and operation results. Gyroscopy Navig. 2011, 2, 75–81. [Google Scholar] [CrossRef]
- Hollowell, J. Heli/SITAN: A terrain referenced navigation algorithm for helicopters. In Proceedings of the IEEE Symposium on Position Location and Navigation, A Decade of Excellence in the Navigation Sciences, Las Vegas, NV, USA, 20–20 March 1990; pp. 616–625. [Google Scholar]
- Wu, L.; Ma, J.; Tian, J. A self-adaptive unscented Kalman filtering for underwater gravity aided navigation. In Proceedings of the 2010 IEEE/ION Position Location and Navigation Symposium (PLANS), Indian Wells, CA, USA, 4–6 May 2010; pp. 142–145. [Google Scholar]
- Liu, F.; Li, Y.; Zhang, Y.; Hou, H. Application of Kalman Filter algorithm in gravity-aided navigation system. In Proceedings of the IEEE 2011 International Conference on Mechatronics and Automation (ICMA), Beijing, China, 7–10 August 2011; pp. 2322–2326. [Google Scholar]
- Yuan, G.; Zhang, H.; Yuan, K.; Zhu, L. Improved SITAN algorithm in the application of aided inertial navigation. In Proceedings of the IEEE 2012 International Conference on Measurement, Information and Control (MIC), Harbin, China, 18–20 May 2012; Volume 2, pp. 922–926. [Google Scholar]
- Wang, H.; Wu, L.; Chai, H.; Hsu, H.; Wang, Y. Technology of gravity aided inertial navigation system and its trial in South China Sea. IET Radar Sonar Navig. 2016, 10, 862–869. [Google Scholar] [CrossRef]
20.8 | 23.0 | 60.3 | 55.5 | 37.7 | 78.0 | 38.8 | 35.3 | 27.7 | 31.5 | 54.8 | 60.6 | 79.7 | |
1.78 | 2.03 | 3.46 | 3.24 | 2.47 | 3.61 | 1.49 | 2.04 | 2.10 | 2.05 | 2.31 | 2.47 | 2.88 | |
3.52 | 4.05 | 6.95 | 6.49 | 4.93 | 7.24 | 2.98 | 4.08 | 4.19 | 4.10 | 4.62 | 4.96 | 5.77 | |
5.10 | 5.98 | 10.31 | 9.65 | 7.28 | 10.82 | 4.43 | 6.08 | 6.20 | 6.06 | 6.89 | 7.40 | 8.62 | |
6.48 | 7.74 | 13.49 | 12.63 | 9.45 | 14.26 | 5.80 | 7.98 | 8.05 | 7.89 | 9.05 | 9.77 | 11.36 | |
7.68 | 9.31 | 16.44 | 15.41 | 11.38 | 17.51 | 7.07 | 9.75 | 9.70 | 9.58 | 11.07 | 12.01 | 13.94 | |
8.71 | 10.68 | 19.17 | 17.96 | 13.08 | 20.57 | 8.23 | 11.37 | 11.16 | 11.11 | 12.94 | 14.13 | 16.36 |
Sailing Route | Starting Point | Mean | STD | RMS |
---|---|---|---|---|
A | 12 | 2.59 | 4.69 | 5.36 |
B | 6 | 1.23 | 0.86 | 1.51 |
Accuracy | >3.0 | <2.5 | <1.5 | <1.5 | <2.0 | <1.5 | >3.0 | <2.5 | <2.5 | <2.5 | <2.5 | <2.0 | <2.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wu, L.; Chai, H.; Xiao, Y.; Hsu, H.; Wang, Y. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation. Sensors 2017, 17, 1851. https://doi.org/10.3390/s17081851
Wang H, Wu L, Chai H, Xiao Y, Hsu H, Wang Y. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation. Sensors. 2017; 17(8):1851. https://doi.org/10.3390/s17081851
Chicago/Turabian StyleWang, Hubiao, Lin Wu, Hua Chai, Yaofei Xiao, Houtse Hsu, and Yong Wang. 2017. "Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation" Sensors 17, no. 8: 1851. https://doi.org/10.3390/s17081851
APA StyleWang, H., Wu, L., Chai, H., Xiao, Y., Hsu, H., & Wang, Y. (2017). Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation. Sensors, 17(8), 1851. https://doi.org/10.3390/s17081851