Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon
Abstract
:1. Introduction
2. Ordered Mesoporous Carbon Materials
2.1. Synthesis and Characterization
2.2. Properties and Electrochemical Characteristics
2.2.1. Physico-Chemical Characterization and Properties of OMC
2.2.2. Electrochemical Characteristics of OMC
2.2.3. OMC Modified Electrodes
- Thick layers of OMC particles can be deposited on solid electrode surfaces (mainly glassy carbon but also pyrolytic graphite or screen-printed carbon electrodes) from OMC dispersion in a suitable solvent, with or without an additional polymeric binder (mainly Nafion, but also chitosan), leading to particulate or composite OMC films. Composite OMC-polymer films are usually more mechanically stable than layers made of only OMC particles but the polymeric binder is likely to affect the OMC electrode response via interactions with species in solution. An alternative configuration is the bilayer OMC particles + organic polymer overcoating. These approaches are, by far, the most widely used in designing OMC-based electrochemical sensors.
- A last approach is the dispersion of as-synthesized OMC particles in carbon paste electrodes or the one-step preparation of OMC paste electrodes by mixing OMC particles with mineral oil.
3. Electrochemical Sensors and Biosensors Applications
3.1. Electrochemical Sensors Based on Unmodified OMC
3.1.1. Preconcentration Electroanalysis Using Unmodified OMC
3.1.2. Direct Detection and Electrocatalysis with Unmodified OMC
3.2. Electrochemical Sensors Based on Functionalized OMC
- The simplest way is surface oxidation to generate a high density of oxygen-containing groups (carboxylic acid, phenol, carbonyl, etc.) [105,106] or surface grafting of reactive functions (e.g., amine) [50] (Figure 6A). The success of such reactions is easily monitored by surface analysis (using X-ray Photoelectron Spectroscopy, XPS, for example).
- Bulk functionalization by doping is possible by adding a nitrogen- and/or sulfur-containing dopant in the precursor synthesis medium, but this strategy (Figure 6B) has been applied for electroanalytical purposes only very recently (N-doping [107,108,109,110] or dual N,S-doping [111]). XPS and Raman spectroscopy are usually used to evidence these additional sites in OMC.
- Series of redox mediators have been adsorbed onto OMC surfaces (Figure 6C), either via π–π stacking, or hydrophobic interactions, or electrostatic attractions, or combinations of these effects. Examples are available for ferrocene-carboxylic acid [112,113], Ru(bpy)32+ [114], metal porphyrins [115,116] and other metal-ligand complexes [117,118], polyoxometalate and related derivatives [24,119], curcumin [120], tetrathiafulvalene [121], metal hexacyanoferrates [122,123,124,125,126]. Non-redox reagents were also immobilized on OMC, such as organic ligands or polymers [127,128,129], as well as ionic liquids [130,131,132] or surfactants [126,133,134]. Due to the electronic conductivity of OMC, the redox-active species can be involved in mediated electrocatalytic schemes in their immobilized form (contrary to non-conducting mesoporous hosts, such as silica-based nanomaterials, for which a certain physical mobility of mediators is necessary to get high sensitivity [135,136], except in case of charge transfer by electron hopping [137,138]).
- Probably the most widely-used approach is the immobilization of noble metal catalysts in the form of nanoparticles (NPs) or electrogenerated deposits [128,132,134,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155] (or even bimetallic NPs [156,157]), which can be formed by either impregnation of metal precursors and subsequent reduction or from nanoparticles suspensions or slurries, or other NPs/deposits (metal oxides or hydroxides, metal sulfides, etc. [106,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172]) accommodated to OMC by impregnation (Figure 6D).
- The last category is that of conducting and/or redox polymers that have been generated onto OMC by electropolymerization of previously impregnated monomers (Figure 6E), exploiting both the conductivity and large surface area of OMC materials. It was the case of polyaniline [173,174] and a series of polymers derived from phenothiazines [175,176,177], phenoxazine [178] or phenazine [179], as well as poly(catechol) [180] and poly(l-proline) [181].
3.2.1. Mediated Electrocatalysis Using OMC Modified Electrodes
3.2.2. Supported Electrocatalysis Using OMC Modified Electrodes
3.2.3. Other Electrochemical Sensors Based on Functionalized OMC Modified Electrodes
- Preconcentration electroanalysis. Ultrasensitive sensors were designed from OMC electrodes modified with selective recognition hosts such as molecularly imprinted polymers for detection of pharmaceuticals (i.e., dimetridazole [128] and ofloxacin [129]) or anchoring ligands for metal ions determination [174]. Figure 9 illustrates an interesting example for mercuric ions detection after open-circuit preconcentration by complexation to bis(indolyl)methane immobilized onto mesoporous carbon nanofibers and subsequent detection by stripping voltammetry in the nanomolar concentration range (Figure 9A). Interestingly, the sensor was highly selective towards mercury recognition in the presence of other metal ions (Cu2+, Pb2+, Cd2+), especially in comparison to the unmodified OMC electrode for which all species were likely to accumulate (see part a in Figure 9B), but only if the preconcentration step was performed at open-circuit for which the organic ligand inhibits the accumulation of Cu2+, Pb2+ and Cd2+, while promoting the enrichment of Hg2+ species. In case of accumulation under cathodic potential, whatever the electrode used, the four stripping peaks were observed (see part b in Figure 9B), confirming the critical role played by the organic ligand to ensure high selectivity. Nevertheless, accumulation under potential can be applied as long as differentiation between the various species can be made on the basis of their different stripping peak potentials, and this has been notably exploited for the simultaneous detection of Pb2+ and Cd2+ in the picomolar concentration range using OMC modified electrode functionalized with bismuth oxide [172]. In that case, both metal ions and bismuth oxide are reduced in the form of an amalgam in the preconcentration step and square wave anodic stripping voltammetry is applied for detection. The interest of OMC for preconcentration electroanalysis applications is similar as for mesoporous silica-based sensors [191], exhibiting faster mass transport rates in comparison to their non-ordered homologs [192].
- Potentiometry. After pioneering works using macroporous carbon as solid contact associated to an ionophore polymer in ion-selective electrodes (ISE) for Ag+ or K+ sensing [26,187,188], colloid-imprinted mesoporous carbon materials were also exploited for that purpose [189]. An advantage of such hydrophobic intermediate mesoporous layer between the metal electrode and the ionophore-doped ISE membrane is its excellent resistance to the formation of a water layer and no interference caused by light, oxygen and carbon dioxide [189]. Mesoporous carbon was also associated to reference membrane electrode and applied to the potentiometric sensing of chloride ions [130], or as contact layer for pH sensing of a sputtered RuO2 thin film [166].
- Electrochemiluminescence (ECL). OMC-based ECL sensors have been also developed recently. A first example concerns electrodeposited polyaniline onto OMC giving rise to a strong ECL emission of luminol originating from the electrochemical reduction of dissolved oxygen [173]. This cathodic ECL response was also applied to H2O2 sensing. A second example relies on OMC with adsorbed Ru(bpy)32+ and tri-n-propylamine as coreactant for dopamine detection, offering a successful amplification strategy for ultrasensitive ECL sensing [114].
3.3. OMC-Based Electrochemical Biosensors
3.3.1. Biosensors Based on Small Redox Proteins Immobilized on OMC
3.3.2. Enzymatic OMC-Based Biosensors
3.3.3. DNA-Modified OMC-Based Biosensors
3.3.4. OMC-Based Immunosensors and Aptasensors
4. Conclusions
- preconcentration electroanalysis (via open-circuit accumulation and subsequent voltammetric detection or electrochemical preconcentration and stripping);
- electrocatalytic detections based on either molecular/organometallic/polymeric mediator species deposited onto the OMC surface or catalytic nanoparticles (metals, metal oxides or sulfides) supported on the OMC host;
- electrochemical biosensors involving bioelectrocatalytic detection mechanisms (based on small redox proteins or enzymes embedded into/onto OMC) and immunosensors or aptasensors.Some other sensors (potentiometric, electrochemiluminescent, impedimetric) are also reported.
Acknowledgments
Conflicts of Interest
References
- Couper, A.M.; Pletcher, D.; Walsh, F.C. Electrode materials for electrosynthesis. Chem. Rev. 1990, 90, 837–865. [Google Scholar] [CrossRef]
- Gilmartin, M.A.T.; Hart, J.P. Sensing with chemically and biologically modified carbon electrodes. Analyst 1995, 120, 1029–1045. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, W.E.; Dieker, J.W. Glassy carbon as electrode material in electroanalytical chemistry. Anal. Chim. Acta 1980, 119, 1–24. [Google Scholar] [CrossRef]
- Svancara, I.; Kalcher, K.; Walcarius, A.; Vytras, K. Electroanalysis with Carbon Paste Electrodes; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-3019-2. [Google Scholar]
- McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ratinac, K.R.; Ringer, S.P.; Thordarson, P.; Gooding, J.J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 2010, 49, 2114–2138. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P.F.; Mayes, R.T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Chang, D.W.; Baek, J.-B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130–1166. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Li, Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 2016, 6. [Google Scholar] [CrossRef]
- Brennan, L.J.; Byrne, M.T.; Bari, M.; Gun’ko, Y.K. Carbon nanomaterials for dye-sensitized solar cell applications: A bright future. Adv. Energy Mater. 2011, 1, 472–485. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, L.; Qin, X.; Li, Y. Carbon nanomaterials for photovoltaic process. Nano Energy 2015, 15, 490–522. [Google Scholar] [CrossRef]
- Wanekaya, A.K. Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 2011, 136, 4383–4391. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Guo, S. Electrocatalytic interface based on novel carbon nanomaterials for advanced electrochemical sensors. ChemCatChem 2015, 7, 2744–2764. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Vij, V.; Kemp, K.C.; Kim, K.S. Engineered carbon nanomaterials-based electrochemical sensors for biomolecules. ACS Nano 2016, 10, 46–80. [Google Scholar] [CrossRef] [PubMed]
- Walcarius, A.; Minteer, S.D.; Wang, J.; Lin, Y.; Merkoci, A. Nanomaterials for bio-functionalized electrodes: Recent trends. J. Mater. Chem. B 2013, 1, 4878–4908. [Google Scholar] [CrossRef]
- Ryoo, R.; Joo, S.H.; Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 1999, 103, 7743–7746. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 2006, 18, 2073–2094. [Google Scholar] [CrossRef]
- Liang, C.; Li, Z.; Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chem. Int. Ed. 2008, 47, 3696–3717. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Song, Y. Mesoporous carbons: Recent advances in synthesis and typical applications. RSC Adv. 2015, 5, 83239–83285. [Google Scholar] [CrossRef]
- Wan, Y.; Shi, Y.; Zhao, D. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem. Mater. 2008, 20, 932–945. [Google Scholar] [CrossRef]
- Walcarius, A. Mesoporous materials and electrochemistry. Chem. Soc. Rev. 2013, 42, 4098–4140. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.J.; Xu, J.J.; Chen, H.Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly. Biosens. Bioelectron. 2007, 22, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Wang, Z.; Yang, G.; Shen, H.; Zhu, L. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine. Electrochem. Commun. 2007, 9, 233–238. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, L.-P.; Lin, F.-Y.; Liu, H.-X. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified. Anal. Chim. Acta 2007, 587, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Ding, J.; Guo, L.-P.; Shang, Q.-K. Electrochemical behavior of l-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal. Chem. 2007, 79, 5328–5335. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-Z.; Fierke, M.A.; Stein, A.; Bühlmann, P. Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal. Chem. 2007, 79, 4621–4626. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.; Wang, X.; Du, X.; Xue, Z. Mini review: Electroanalytical sensors of mesoporous silica materials. Anal. Lett. 2013, 46, 2789–2812. [Google Scholar] [CrossRef]
- Walcarius, A. Mesoporous materials-based electrochemical sensors. Electroanalysis 2015, 27, 1303–1340. [Google Scholar] [CrossRef]
- Etienne, M.; Zhang, L.; Vilà, N.; Walcarius, A. Mesoporous materials-based electrochemical enzymatic biosensors. Electroanalysis 2015, 27, 2028–2054. [Google Scholar] [CrossRef]
- Ndamanisha, J.C.; Guo, L.-P. Ordered mesoporous carbon for electrochemical sensing. Anal. Chim. Acta 2012, 747, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Walcarius, A. Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. Trends Anal. Chem. 2012, 38, 79–97. [Google Scholar] [CrossRef]
- Bo, X.; Zhou, M. Electrochemical sensors based on ordered mesoporous carbons. In Advanced Electrode Materials; Tiwari, A., Kuralay, F., Uzun, L., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2017; Chapter 6; pp. 213–242. ISBN 9781119242529. [Google Scholar]
- Jun, S.; Joo, S.H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712–10713. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Z.; Mokaya, R. Templated nanoscale porous carbons. Nanoscale 2010, 2, 639–659. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Hong, K.; Guiochon, G.A.; Mays, J.W.; Dai, S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew. Chem. Int. Ed. 2004, 43, 5785–5789. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.-Y.; Liu, L.; Yuan, Z.-Y. Direct synthesis of ordered mesoporous carbons. Chem. Soc. Rev. 2013, 42, 3977–4003. [Google Scholar] [CrossRef] [PubMed]
- Moreno, N.; Caballero, A.; Hernán, L.; Morales, J.; Canales-Vázquez, J. Ordered mesoporous carbons obtained by a simple soft template method as sulfur immobilizers for lithium-sulfur cells. Phys. Chem. Chem. Phys. 2014, 16, 17332–17340. [Google Scholar] [CrossRef] [PubMed]
- Calvillo, L.; Lázaro, M.J.; Garcia-Bordejé, E.; Moliner, R.; Cabot, P.L.; Esparbé, I.; Pastor, E.; Quintana, J.J. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. J. Power Sources 2007, 169, 59–64. [Google Scholar] [CrossRef]
- Joo, S.H.; Jun, S.; Ryoo, R. Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Microporous Mesoporous Mater. 2001, 44–45, 153–158. [Google Scholar] [CrossRef]
- Asouhidou, D.D.; Triantafyllidis, K.S.; Lazaridis, N.K.; Matis, K.A.; Kim, S.-S.; Pinnavaia, T.J. Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous Mesoporous Mater. 2009, 117, 257–267. [Google Scholar] [CrossRef]
- Ryoo, R.; Joo, S.H.; Kruk, M.; Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13, 677–681. [Google Scholar] [CrossRef]
- Mitomea, T.; Uchidaa, Y.; Egashiraa, Y.; Nishiyama, N. Synthesis of ordered mesoporous carbon films with a 3D pore structure and the electrochemical performance of electrochemical double layer capacitors. Colloids Surf. A 2014, 449, 51–56. [Google Scholar] [CrossRef]
- Regiart, M.; Magallanes, J.L.; Barrera, D.; Villarroel-Rocha, J.; Sapag, K.; Raba, J.; Bertolino, F.A. An ordered mesoporous carbon modified electrochemical sensor for solid-phase microextraction and determination of triclosan in environmental samples. Sens. Actuators B Chem. 2016, 232, 765–772. [Google Scholar] [CrossRef]
- Thangaraj, R.; Senthil Kumar, A. Graphitized mesoporous carbon modified glassy carbon electrode for selective sensing of xanthine, hypoxanthine, and uric acid. Anal. Methods 2012, 4, 2162–2171. [Google Scholar] [CrossRef]
- Hou, Y.; Guo, L.; Wang, G. Synthesis and electrochemical performance of ordered mesoporous carbons with different pore characteristics for electrocatalytic oxidation of hydroquinone. J. Electroanal. Chem. 2008, 617, 211–217. [Google Scholar] [CrossRef]
- Bai, J.; Bo, X.; Zhu, D.; Wang, G.; Guo, L. A comparison of the electrocatalytic activities of ordered mesoporous carbons treated with either HNO3 or NaOH. Electrochim. Acta 2010, 56, 657–662. [Google Scholar] [CrossRef]
- Torkian, L.; Mohammadi, N.; Amereh, E. Synthesis and electrochemical study of nano graphitic mesoporous carbon. J. Appl. Chem. Res. 2015, 9, 65–72. [Google Scholar]
- Shao, Y.; Wang, X.; Engelhard, M.; Wang, C.; Dai, S.; Liu, J.; Yang, Z.; Lin, L. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. J. Power Sources 2010, 195, 4375–4379. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, H.; Yuan, Q.; Shen, H.; Zhu, X.; Liu, Y.; Gan, W. N-Doped ordered mesoporous carbon originated from a green biological dye for electrochemical sensing and high-pressure CO2 storage. ACS Appl. Mater. Interfaces 2016, 8, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Gao, Q.; Xia, K.; Gao, L. Selective determination of dopamine in the presence of ascorbic acid at porous-carbon-modified glassy carbon electrodes. Electroanalysis 2008, 20, 1159–1166. [Google Scholar] [CrossRef]
- Nishihara, H.; Kwon, T.; Fukura, Y.; Nakayama, W.; Hoshikawa, Y.; Iwamura, S.; Nishiyama, N.; Itoh, T.; Kyotani, T. Fabrication of a highly conductive ordered porous electrode by carbon-coating of a continuous mesoporous silica film. Chem. Mater. 2011, 23, 3144–3151. [Google Scholar] [CrossRef]
- Feng, D.; Lv, Y.; Wu, Z.; Dou, Y.; Han, L.; Sun, Z.; Xia, Y.; Zheng, G.; Zhao, D. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J. Am. Chem. Soc. 2011, 133, 15148–15156. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Ye, J.; Zhou, L.; Zhang, Y.; Yu, C. Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film. J. Electroanal. Chem. 2009, 625, 82–87. [Google Scholar] [CrossRef]
- Yue, Y.; Hu, G.; Zheng, M.; Guo, Y.; Cao, J.; Shao, S. A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid. Carbon 2012, 50, 107–114. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, P.; Bo, X.; Guo, L. Mesoporous carbon nanofibers as advanced electrode materials for electrocatalytic applications. Electrochim. Acta 2012, 65, 115–121. [Google Scholar] [CrossRef]
- Zhou, S.; Shi, H.; Feng, X.; Xue, K.; Song, W. Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination of biomolecules. Biosens. Bioelectron. 2013, 42, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhai, X.; Liu, X.; Wang, L.; Liu, H.; Wang, H. Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 2016, 148, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Ma, Y.; Guo, Y.; Shao, S. Selective electrochemical sensing of calcium dobesilate based on an ordered mesoporous carbon-modified pyrolytic graphite electrode. J. Electroanal. Chem. 2009, 633, 264–267. [Google Scholar] [CrossRef]
- Xue, Z.; Hu, C.; Rao, H.; Wang, X.; Zhou, X.; Liu, X.; Lu, X. A novel electrochemical sensor for capsaicin based on mesoporous cellular foams. Anal. Methods 2015, 7, 1167–1174. [Google Scholar] [CrossRef]
- Ya, Y.; Wang, T.; Xie, L.; Zhu, J.; Tang, L.; Ning, D.; Yan, F. Highly sensitive electrochemical sensor based on pyrrolidinium ionic liquid modified ordered mesoporous carbon paste electrode for determination of carbendazim. Anal. Methods 2015, 7, 1493–1498. [Google Scholar] [CrossRef]
- Rofouei, M.K.; Khoshsafar, H.; Kalbasi, R.J.; Bagheri, H. A sensitive electrochemical sensor for the determination of carvedilol based on a modified glassy carbon electrode with ordered mesoporous carbon. RSC Adv. 2016, 6, 13160–13167. [Google Scholar] [CrossRef]
- Yu, J.; Du, W.; Zhao, F.; Zeng, B. High sensitive simultaneous determination of catechol and hydroquinone at mesoporous carbon CMK-3 electrode in comparison with multi-walled carbon nanotubes and Vulcan XC-72 carbon electrodes. Electrochim. Acta 2009, 54, 984–988. [Google Scholar] [CrossRef]
- Hong, Z.; Zhou, L.; Li, J.; Tang, J. A sensor based on graphitic mesoporous carbon/ionic liquids composite film for simultaneous determination of hydroquinone and catechol. Electrochim. Acta 2013, 109, 671–677. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, Y.; Ye, J.; Du, H. Sensitive and selective determination of chloramphenicol on ordered mesoporous carbon/Nafion composite film. Int. J. Electrochem. Sci. 2015, 10, 8263–8275. [Google Scholar]
- Mohammadi, N.; Najafi, M.; Adeh, N.B. Highly defective mesoporous carbon—Ionic liquid paste electrode as sensitive voltammetric sensor for determination of chlorogenic acid in herbal extracts. Sens. Actuators B Chem. 2017, 243, 838–846. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, B.; Ji, L.; Wang, F.; Yuan, Q.; Hu, G.; Dong, A.; Gan, W. An efficient electrochemical sensor based on three-dimensionally interconnected mesoporous graphene framework for simultaneous determination of Cd(II) and Pb(II). Electrochim. Acta 2016, 222, 1371–1377. [Google Scholar] [CrossRef]
- Guo, Z.; Li, S.; Liu, X.M.; Gao, Y.P.; Zhang, W.W.; Ding, X.P. Mesoporous carbon-polyaniline electrode: Characterization and application to determination of copper and lead by anodic stripping voltammetry. Mater. Chem. Phys. 2011, 128, 238–242. [Google Scholar] [CrossRef]
- Ndamanisha, J.C.; Bai, J.; Qi, B.; Guo, L. Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Anal. Biochem. 2009, 386, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Wang, H.; Zhang, H.; Yu, L.; Li, M.; Li, M. Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst. J. Electroanal. Chem. 2015, 750, 65–73. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, L.; Hou, Y.; Peng, X.J. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine. Electrochim. Acta 2008, 53, 4176–4184. [Google Scholar] [CrossRef]
- Jahanbakhshi, M. Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid. Mater. Sci. Eng. C 2017, 70, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, X.; Jia, J. Electrochemical detection of natural estrogens using a graphene/ordered mesoporous carbon modified carbon paste electrode. Anal. Methods 2015, 7, 8626–8631. [Google Scholar] [CrossRef]
- Yang, H.; Lu, B.; Qi, B.; Guo, L. Voltammetric sensor based on ordered mesoporous carbon for folic acid determination. J. Electroanal. Chem. 2011, 660, 2–7. [Google Scholar] [CrossRef]
- Ndamanisha, J.C.; Guo, L. Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode. Bioelectrochemistry 2009, 77, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Guo, L.; Ndamanisha, J.C.; Qi, B. Electrochemical properties and simultaneous determination of dihydroxybenzene isomers at ordered mesoporous carbon-modified electrode. J. Appl. Electrochem. 2009, 39, 2497–2503. [Google Scholar] [CrossRef]
- Yan, X.; Bo, X.; Guo, L. Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode. Sens. Actuators B Chem. 2011, 155, 837–842. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, X.-F.; Li, J.; Liu, Y.-W.; Zhang, J.; Yang, C. Ordered mesoporous carbon as electrode modification material for selective and sensitive electrochemical sensing of melamine. Sens. Actuators B Chem. 2014, 200, 101–108. [Google Scholar] [CrossRef]
- Pan, D.; Ma, S.; Bo, X.; Guo, L. Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbon electrode modified with ordered mesoporous carbon. Microchim. Acta 2011, 173, 215–221. [Google Scholar] [CrossRef]
- Li, F.; Song, J.; Shan, C.; Gao, D.; Xu, X.; Niu, L. Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode. Biosens. Bioelectron. 2010, 25, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.; Xie, W.; Ndamanisha, J.C.; Bai, J.; Guo, L. Electrochemical oxidation and detection of morphine at ordered mesoporous carbon modified glassy carbon electrodes. Electroanalysis 2009, 21, 2549–2555. [Google Scholar] [CrossRef]
- Zhou, M.; Shang, L.; Li, B.; Huang, L.; Dong, S. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes. Electrochem. Commun. 2008, 10, 859–863. [Google Scholar] [CrossRef]
- Wang, Y.; You, C.; Zhang, S.; Kong, J.; Marty, J.-L.; Zhao, D.; Liu, B. Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes. Microchim. Acta 2009, 167, 75–79. [Google Scholar] [CrossRef]
- You, C.; Yan, X.; Wang, Y.; Zhang, S.; Kong, J.; Zhao, D.; Liu, B. Electrocatalytic oxidation of NADH based on bicontinuous gyroidal mesoporous carbon with low overpotential. Electrochem. Commun. 2009, 11, 227–230. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, H.; Wu, Y.; Shi, H.; Feng, X.; Jiang, S.; Chen, J.; Song, W. Hemi-ordered nanoporous carbon electrode material for highly selective determination of nitrite in physiological and environmental systems. Thin Solid Films 2014, 564, 406–411. [Google Scholar] [CrossRef]
- Zang, J.; Guo, C.X.; Hu, F.; Yu, L.; Li, C.M. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon. Anal. Chim. Acta 2011, 683, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Nie, D.; Li, P.; Zhang, D.; Zhou, T.; Liang, Y.; Shi, G. Simultaneous determination of nitroaromatic compounds in water using capillary electrophoresis with amperometric detection on an electrode modified with a mesoporous nano-structured carbon material. Electrophoresis 2010, 31, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, Y.; Zhang, X.; Zhu, G.; Liu, B.; Chen, J. Sensitive electrochemical detection of nitrobenzene based on macro-/meso-porous carbon materials modified glassy carbon electrode. Talanta 2012, 88, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Lang, Q.; Yang, D.; Li, L.; Zeng, L.; Zheng, C.; Li, T.; Wei, M.; Liu, A. Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochim. Acta 2013, 106, 127–134. [Google Scholar] [CrossRef]
- Ghoneim, M.M.; El-Desoky, H.S.; Matsuda, A.; Hattori, T.; Abdel-Galeil, M.M. Voltammetric analysis of nitroxoline in tablets and human serum using modified carbon paste electrodes incorporating mesoporous carbon or multiwalled carbon nanotubes. RSC Adv. 2015, 5, 56086–56097. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, L.; Han, L.; Li, T.; Zheng, C.; Wei, M.; Liu, A. Ultrasensitive electrochemical sensor for p-nitrophenyl organophosphates based on ordered mesoporous carbons at low potential without deoxygenization. Anal. Chim. Acta 2014, 822, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Tian, C.; Yang, R.; Zhai, J. Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/Nafion composite film electrode. Electroanalysis 2008, 20, 527–533. [Google Scholar] [CrossRef]
- Zhai, X.; Li, L.; Gao, H.; Si, C.; Yue, C. Electrochemical sensor for lead(II) ion using a carbon ionic-liquid electrode modified with a composite consisting of mesoporous carbon, an ionic liquid, and chitosan. Microchim. Acta 2012, 177, 373–380. [Google Scholar] [CrossRef]
- Thangaraj, R.; Manjula, N.; Senthil Kumar, A. Rapid simultaneous electrochemical sensing of tea polyphenols. Anal. Methods 2012, 4, 2922–2928. [Google Scholar] [CrossRef]
- Munyentwall, A.; Zhu, L. Electrochemical determination of prednisolone at ordered mesoporous carbon modified electrode: application to doping monitoring. J. Electrochem. Soc. 2015, 162, H278–H282. [Google Scholar] [CrossRef]
- Yang, X.; Feng, B.; Yang, P.; Ding, Y.; Chen, Y.; Fei, J. Electrochemical determination of toxic ractopamine at an ordered mesoporous carbon modified electrode. Food Chem. 2014, 145, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Ndamanisha, J.C.; Liu, L.; Yang, L.; Guo, L. Voltammetric detection of riboflavin based on ordered mesoporous carbon modified electrode. J. Solid State Electrochem. 2010, 14, 2251–2256. [Google Scholar] [CrossRef]
- Mohammadi, N.; Adeh, N.B.; Najafi, M. A highly defective mesoporous carbon—Ionic liquid paste electrode toward the sensitive electrochemical determination of rutin. Anal. Methods 2017, 9, 84–93. [Google Scholar] [CrossRef]
- Yang, D.; Zhu, L.; Jiang, X.; Guo, L. Sensitive determination of Sudan I at an ordered mesoporous carbon modified glassy carbon electrode. Sens. Actuators B Chem. 2009, 141, 124–129. [Google Scholar] [CrossRef]
- Hu, G.; Guo, Y.; Shao, S. Ultrasensitive electrochemical sensing of the anticancer drug tirapazamine using an ordered mesoporous carbon modified pyrolytic graphite electrode. Biosens. Bioelectron. 2009, 24, 3391–3394. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wu, H.; Wu, Y.; Shi, H.; Feng, X.; Huang, H.; Li, J.; Song, W. Large surface area carbon material with ordered mesopores for highly selective determination of l-tyrosine in the presence of l-cysteine. Electrochim. Acta 2013, 112, 90–94. [Google Scholar] [CrossRef]
- Wen, Y.L.; Jia, N.Q.; Wang, Z.Y.; Shen, H.B. Selective voltammetric determination of uric acid in the presence of ascorbic acid at ordered mesoporous carbon modified electrodes. Chin. J. Chem. 2008, 26, 1052–1056. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, G.; Shao, S.; Guo, Y. An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode. Chem. Papers 2009, 63, 641–645. [Google Scholar] [CrossRef]
- Mohammadi, N.; Adeh, N.B.; Najafi, M. Synthesis and characterization of highly defective mesoporous carbon and its potential use in electrochemical sensors. RSC Adv. 2016, 6, 33419–33425. [Google Scholar] [CrossRef]
- Zhou, S.; Li, J.; Zhang, F.; Zhang, T.; Huang, H.; Song, W. Dispersible mesoporous carbon nanospheres as active electrode materials for biomolecular sensing. Microporous Mesoporous Mater. 2015, 202, 73–79. [Google Scholar] [CrossRef]
- Wu, Z.; Webley, P.A.; Zhao, D. Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent. Langmuir 2010, 26, 10277–10286. [Google Scholar] [CrossRef] [PubMed]
- Quiroa-Montalvan, C.M.; Gomez-Pineda, L.E.; Alvarez-Contreras, L.; Valdez, R.; Arjona, N.; Oropeza-Guzman, M.T. Ordered mesoporous carbon decorated with magnetite for the detection of heavy metals by square wave anodic stripping voltammetry. J. Electrochem. Soc. 2017, 164, B304–B313. [Google Scholar] [CrossRef]
- Gai, P.; Zhang, H.; Zhang, Y.; Liu, W.; Zhu, G.; Zhang, X.; Chen, J. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra. J. Mater. Chem. B 2013, 121, 2742–2749. [Google Scholar] [CrossRef]
- Joshi, A.; Schuhmann, W.; Nagaiah, T.C. Mesoporous nitrogen containing carbon materials for the simultaneous detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem. 2016, 230, 544–555. [Google Scholar] [CrossRef]
- Nsabimana, A.; Lai, J.; Li, S.; Hui, P.; Liu, Z.; Xu, G. Surfactant-free synthesis of three-dimensional nitrogen-doped hierarchically porous carbon and its application as an electrode modification material for simultaneous sensing of ascorbic acid, dopamine and uric acid. Analyst 2017, 142, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, H.; Shi, L.; Lan, M.; Zhang, H.; Yu, C. Enzyme- and metal-free electrochemical sensor for highly sensitive superoxide anion detection based on nitrogen doped hollow mesoporous carbon spheres. Electrochim. Acta 2017, 227, 69–76. [Google Scholar] [CrossRef]
- Xu, R.; Xiao, L.; Luo, L.; Yuan, Q.; Qin, D.; Hu, G.; Gan, W. Nitrogen, sulfur dual-doped mesoporous carbon modified glassy carbon electrode for simultaneous determination of hydroquinone and catechol. J. Electrochem. Soc. 2016, 163, B617–B623. [Google Scholar] [CrossRef]
- Ndamanisha, J.C.; Guo, L.; Wang, G. Mesoporous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties. Microporous Mesoporous Mater. 2008, 113, 114–121. [Google Scholar] [CrossRef]
- Ndamanisha, J.C.; Guo, L. Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode. Biosens. Bioelectron. 2008, 23, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Miao, C.; Yu, L.; Wang, Z.; Huang, C.; Jia, N. Sensitive electrochemiluminescence sensor based on ordered mesoporous carbon composite film for dopamine. Sens. Actuators B Chem. 2014, 195, 22–27. [Google Scholar] [CrossRef]
- Cao, H.; Sun, X.; Zhang, Y.; Hu, C.; Jia, N. Electrochemical sensing based on hemin-ordered mesoporous carbon nanocomposites for hydrogen peroxide. Anal. Methods 2012, 4, 2412–2416. [Google Scholar] [CrossRef]
- Liu, J.; Bo, X.; Yang, J.; Yin, D.; Guo, L. One-step synthesis of porphyrinic iron-based metal-organic framework/ordered mesoporous carbon for electrochemical detection of hydrogen peroxide in living cells. Sens. Actuators B Chem. 2017, 248, 207–213. [Google Scholar] [CrossRef]
- Lu, J.; Ju, J.; Bo, X.; Wang, H.; Guo, L. Cobalt(II) Schiff base/large mesoporous carbon composite film modified electrode as electrochemical biosensor for hydrogen peroxide and glucose. Electroanalysis 2013, 25, 2531–2538. [Google Scholar] [CrossRef]
- Ghasemi, E.; Alimardani, E.; Shams, E.; Koohmareh, G.A. Modification of glassy carbon electrode with iron-terpyridine complex and iron-terpyridine complex covalently bonded to ordered mesoporous carbon substrate: Preparation, electrochemistry and application to H2O2 determination. J. Electroanal. Chem. 2017, 789, 92–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Bo, X.; Nsabimana, A.; Munyentwall, A.; Han, C.; Li, M.; Guo, L. Green and facile synthesis of an Au nanoparticles@polyoxometalate/ordered mesoporous carbon tri-component nanocomposite and its electrochemical applications. Biosens. Bioelectron. 2015, 66, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhang, Q.; Gu, H.; Gao, X.; Qi, B. Ultra sensitive voltammetric determination of hydrazine with curcumin—Ordered mesoporous carbon composite as sensing material. Int. J. Electrochem. Sci. 2015, 10, 7083–7090. [Google Scholar]
- Ndamanisha, J.C.; Bo, X.; Guo, L. Electrocatalytic reduction of oxygen at ordered mesoporous carbon functionalized with tetrathiafulvalene. Analyst 2010, 135, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Lu, P.; Li, C.; Wang, C.; Yu, J. Highly improved electrooxidation of captopril on copper hexacyanoferrate/ordered mesoporous carbon-modified glassy carbon electrode. Aust. J. Chem. 2014, 67, 851–857. [Google Scholar] [CrossRef]
- Yan, X.; Pan, D.; Wang, H.; Bo, X.; Guo, L. Electrochemical determination of l-dopa at cobalt hexacyanoferrate/large-mesopore carbon composite modified electrode. J. Electroanal. Chem. 2011, 663, 36–42. [Google Scholar] [CrossRef]
- Yang, H.; Lu, B.; Guo, L.; Qi, B. Cerium hexacyanoferrate/ordered mesoporous carbon electrode and its application in electrochemical determination of hydrous hydrazine. J. Electroanal. Chem. 2011, 650, 171–175. [Google Scholar] [CrossRef]
- Bai, J.; Qi, B.; Ndamanisha, J.C.; Guo, L. Ordered mesoporous carbon-supported Prussian blue: Characterization and electrocatalytic properties. Microporous Mesoporous Mater. 2009, 119, 193–199. [Google Scholar] [CrossRef]
- Liu, L.; Guo, L.; Bo, X.; Bai, J.; Cui, X. Electrochemical sensors based on binuclear cobalt phthalocyanine/surfactant/ordered mesoporous carbon composite electrode. Anal. Chim. Acta 2010, 673, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Li, Q.; Wang, N.; Shao, S. Development of a new electrochemical sensor for determination of Hg(II) based on Bis(indolyl)methane/Mesoporous carbon nanofiber/Nafion/glassy carbon electrode. Sens. Actuators B Chem. 2015, 215, 592–597. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, F. Electrochemical sensor for dimetridazole based on novel gold nanoparticles@molecularly imprinted polymer. Sens. Actuators B Chem. 2015, 220, 1017–1022. [Google Scholar] [CrossRef]
- Tan, F.; Zhao, Q.; Teng, F.; Sun, D.; Gao, J.; Quan, X.; Chen, J. Molecularly imprinted polymer/mesoporous carbon nanoparticles as electrode sensing material for selective detection of ofloxacin. Mater. Lett. 2014, 129, 95–97. [Google Scholar] [CrossRef]
- Hu, J.; Ho, K.T.; Zou, X.U.; Smyrl, W.H.; Stein, A.; Buhlmann, P. All-solid-state reference electrodes based on colloid-imprinted mesoporous carbon and their application in disposable paper-based potentiometric sensing devices. Anal. Chem. 2015, 87, 2981–2987. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Hu, Y.; Zhu, S.; Xu, J.; Xu, Y. A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid. Anal. Bioanal. Chem. 2010, 396, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Yang, L.; Zhao, F.; Zeng, B. A novel electrochemical quercetin sensor based onPd/MoS2-ionic liquid functionalized ordered mesoporous carbon. Electrochim. Acta 2017, 247, 657–665. [Google Scholar] [CrossRef]
- Abdel-Galeil, M.M.; Ghoneim, M.M.; El-Desoky, H.S.; Hattori, T.; Matsuda, A. Voltammetric ciprofloxacin sensor based on carbon paste electrodes modified with mesoporous carbon with enhancement effect using CTAB. J. Electrochem. Soc. 2015, 162, H541–H550. [Google Scholar] [CrossRef]
- Li, F.; Wang, H.; Zhao, X.; Li, B.; Zhang, Y. Microwave-assisted route for the preparation of Pd anchored on surfactant functionalized ordered mesoporous carbon and its electrochemical applications. RSC Adv. 2016, 6, 70810–70815. [Google Scholar] [CrossRef]
- Vilà, N.; Ghanbaja, J.; Aubert, E.; Walcarius, A. Electrochemically assisted generation of highly ordered azide-functionalized mesoporous silica for oriented hybrid films. Angew. Chem. Int. Ed. 2014, 53, 2945–2950. [Google Scholar] [CrossRef] [PubMed]
- Karman, C.; Vilà, N.; Walcarius, A. Amplified charge transfer for anionic redox probes through oriented mesoporous silica thin films. ChemElectroChem 2016, 3, 2130–2137. [Google Scholar] [CrossRef]
- Vilà, N.; Walcarius, A. Electrochemical response of vertically-aligned, ferrocene-functionalized mesoporous silica films: effect of supporting electrolyte. Electrochim. Acta 2015, 179, 304–314. [Google Scholar] [CrossRef]
- Audebert, P.; Vilà, N.; Allain, C.; Maisonneuve, F.; Walcarius, A.; Hapiot, P. Highly organized ferrocene-functionalized nanoporous silica films with an extremely fast electron-transfer rate for an intrinsically nonconducting oxide-modified electrode. ChemElectroChem 2015, 2, 1695–1698. [Google Scholar] [CrossRef]
- Zhang, Y.; Bo, X.; Guo, L. Electrochemical behavior of 6-benzylaminopurine and its detection based on Pt/ordered mesoporous carbons modified electrode. Anal. Methods 2012, 4, 736–741. [Google Scholar] [CrossRef]
- Fang, G.; Liu, G.; Yang, Y.; Wang, S. Quartz crystal microbalance sensor based on molecularly imprinted polymer membrane and threedimensional Au nanoparticles@mesoporous carbon CMK-3 functional composite for ultrasensitive and specific determination of citrinin. Sens. Actuators B Chem. 2016, 230, 272–280. [Google Scholar] [CrossRef]
- Su, C.; Zhang, C.; Lu, G.; Ma, C. Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis 2010, 22, 1901–1905. [Google Scholar] [CrossRef]
- Haghighi, B.; Karimi, B.; Tavahodi, M.; Behzadneia, H. Fabrication of a nonenzymatic glucose sensor using Pd-nanoparticles decorated ionic liquid derived fibrillated mesoporous carbon. Mater. Sci. Eng. C 2015, 52, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bo, X.; Luhana, C.; Guo, L. Preparation and electrocatalytic application of high dispersed Pt nanoparticles/ordered mesoporous carbon composites. Electrochim. Acta 2011, 56, 5849–5854. [Google Scholar] [CrossRef]
- Li, B.; Zhang, T.; Wang, H.; Zhao, X.; Li, F.; Liu, M.; Zhao, J.; Zhang, Y. Polyoxometalates-mediated facile synthesis of Pt nanoparticles anchored on an ordered mesoporous carbon for electrochemical applications. RSC Adv. 2016, 6, 93469–93475. [Google Scholar] [CrossRef]
- Wang, L.; Bo, X.; Bai, J.; Zhu, L.; Guo, L. Gold nanoparticles electrodeposited on ordered mesoporous carbon as an enhanced material for nonenzymatic hydrogen peroxide sensor. Electroanalysis 2010, 22, 2536–2542. [Google Scholar] [CrossRef]
- Bo, X.; Bai, J.; Qi, B.; Guo, L. Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosens. Bioelectron. 2011, 28, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Guo, K.; Liao, L.; Xiao, J.; Kong, J.; Ji, C.; Liu, B. Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide. Talanta 2012, 99, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Habibi, B.; Jahanbakhshi, M. A novel nonenzymatic hydrogen peroxide sensor based on the synthesized mesoporous carbon and silver nanoparticles nanohybrid. Sens. Actuators B Chem. 2014, 203, 919–925. [Google Scholar] [CrossRef]
- Bo, X.; Ndamanisha, J.C.; Bai, J.; Guo, L. Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta 2010, 82, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.; Bai, J.; Ju, J.; Guo, L. A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle. Anal. Chim. Acta 2010, 675, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Wang, Y.H.; Bai, J.; He, X.Y.; Jiang, X.E. Large mesoporous carbons decorated with silver and gold nanoparticles by a self-assembly method: enhanced electrocatalytic activity for H2O2 electroreduction and sodium nitrite electrooxidation. RSC Adv. 2015, 5, 2956–2962. [Google Scholar] [CrossRef]
- Heidari, H.; Habibi, B.; Vaigan, F.B. Glassy carbon electrode modified with an ordered mesoporous carbon/Ag nanoparticle nanocomposite for the selective detection of iodate. Anal. Methods 2016, 8, 4406–4412. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, F.; Qin, D.; Wang, Y.; Zhang, J.; Liu, J.; Feng, Y.; Lu, X. One-pot synthesis of silver nanoparticle catalysts supported on N-doped ordered mesoporous carbon and application in the detection of nitrobenzene. Carbon 2014, 69, 481–489. [Google Scholar] [CrossRef]
- Ma, M.; Zhu, P.; Pi, F.; Ji, J.; Sun, X. A disposable molecularly imprinted electrochemical sensor based on screen-printed electrode modified with ordered mesoporous carbon and gold nanoparticles for determination of ractopamine. J. Electroanal. Chem. 2016, 775, 171–178. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Q.; Wang, H.; Gu, H.; Zhang, Q.; Gao, X.; Qi, B. Formation of flowerlike gold nanostructure on ordered mesoporous carbon electrode and its application in electrochemical determination of ractopamine. Mater. Lett. 2015, 147, 58–60. [Google Scholar] [CrossRef]
- Xu, L.; Ouyang, R.; Zhou, S.; Wen, H.; Zhang, X.; Yang, Y.; Guo, N.; Li, W.; Hu, X.; Yang, Z.; et al. Sn-Pb hybrid nanoparticle decorated mesoporous carbon for sensitive stripping detection of Cd (II). J. Electrochem. Soc. 2014, 161, H730–H737. [Google Scholar]
- Bo, X.; Bai, J.; Yang, L.; Guo, L. The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose. Sens. Actuators B Chem. 2011, 157, 662–668. [Google Scholar] [CrossRef]
- Ju, J.; Bai, J.; Bo, X.; Guo, L. Non-enzymatic acetylcholine sensor based on Ni-Al layered double hydroxides/ordered mesoporous carbon. Electrochim. Acta 2012, 78, 569–575. [Google Scholar] [CrossRef]
- Lu, B.; Bai, J.; Bo, X.; Zhu, L.; Guo, L. A simple hydrothermal synthesis of nickel hydroxide-ordered mesoporous carbons nanocomposites and its electrocatalytic application. Electrochim. Acta 2010, 55, 8724–8730. [Google Scholar] [CrossRef]
- Luo, L.; Li, F.; Zhu, L.; Ding, Y.; Zhang, Z.; Deng, D.; Lu, B. Nonenzymatic glucose sensor based on nickel(II)oxide/ordered mesoporous carbon modified glassy carbon electrode. Colloids Surf. B 2013, 102, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhou, S.; Wu, Y.; Song, W. Ultrafine CuO nanoparticles isolated by ordered mesoporous carbon for catalysis and electroanalysis. J. Mater. Chem. A 2013, 1, 14198–14205. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, N.; Cao, J.; Wang, W.; Chen, Z. In situ attachment of cupric oxide nanoparticles to mesoporous carbons for sensitive amperometric nonenzymatic sensing of glucose. Sens. Actuators B Chem. 2013, 178, 125–131. [Google Scholar] [CrossRef]
- Fort, C.I.; Cotet, L.C.; Danciu, V.; Turdean, G.L.; Popescu, I.C. Iron doped carbon aerogel—New electrode material for electrocatalytic reduction of H2O2. Mater. Chem. Phys. 2013, 138, 893–898. [Google Scholar] [CrossRef]
- Li, M.; Han, C.; Zhang, Y.; Bo, X.; Guo, L. Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors. Anal. Chim. Acta 2015, 861, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Ndamanisha, J.C.; Guo, L.; Peng, X.J.; Bai, J.; Ndamanisha, J.C. Synthesis of ordered mesoporous carbon/cobalt oxide nanocomposite for determination of glutathione. Electrochim. Acta 2009, 54, 6166–6171. [Google Scholar] [CrossRef]
- Lonsdale, W.; Maurya, D.K.; Wajrak, M.; Alameh, K. Effect of ordered mesoporous carbon contact layer on the sensing performance of sputtered RuO2 thin film pH sensor. Talanta 2017, 164, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; He, X. In situ synthesis of ceria nanoparticles in the ordered mesoporous carbon as a novel electrochemical sensor for the determination of hydrazine. Anal. Chim. Acta 2014, 819, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Ndamanisha, J.C.; Hou, Y.; Bai, J.; Guo, L. Effects of ferrocene derivative on the physico-chemical and electrocatalytic properties of ordered mesoporous carbon. Electrochim. Acta 2009, 54, 3935–3942. [Google Scholar] [CrossRef]
- Bo, X.; Bai, J.; Wang, L.; Guo, L. In situ growth of copper sulfide nanoparticles on ordered mesoporous carbon and their application as nonenzymatic amperometric sensor of hydrogen peroxide. Talanta 2010, 81, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Li, F.; Zhu, L.; Zhang, Z.; Ding, Y.; Deng, D. Non-enzymatic hydrogen peroxide sensor based on MnO2-ordered mesoporous carbon composite modified electrode. Electrochim. Acta 2012, 77, 179–183. [Google Scholar] [CrossRef]
- Bai, J.; Bo, X.; Luhana, C.; Guo, L. A novel material based on cupric(II) oxide/macroporous carbon and its enhanced electrochemical property. Electrochim. Acta 2011, 56, 7377–7384. [Google Scholar] [CrossRef]
- Zeinu, K.M.; Hou, H.; Liu, B.; Yuan, X.; Huang, L.; Zhu, X.; Hu, J.; Yang, J.; Liang, S.; Wu, X. A novel hollow sphere bismuth oxide doped mesoporous carbon nanocomposite material derived from sustainable biomass for picomolar electrochemical detection of lead and cadmium. J. Mater. Chem. A 2016, 4, 13967–13979. [Google Scholar] [CrossRef]
- Dai, H.; Lin, Y.; Xu, G.; Gong, L.; Yang, C.; Ma, X.; Chen, G. Cathodic electrochemiluminescence of luminol using polyaniline/ordered mesoporous carbon (CMK-3) hybrid modified electrode for signal amplification. Electrochim. Acta 2012, 78, 508–514. [Google Scholar] [CrossRef]
- Tang, L.; Chen, J.; Zeng, G.; Zhu, Y.; Zhang, Y.; Zhou, Y.; Xie, X.; Yang, G.; Zhang, S. Ordered mesoporous carbon and thiolated polyaniline modified electrode for simultaneous determination of cadmium(II) and lead(II) by anodic stripping voltammetry. Electroanalysis 2014, 26, 2283–2291. [Google Scholar] [CrossRef]
- Fang, J.; Qi, B.; Yang, L.; Guo, L. Ordered mesoporous carbon functionalized with poly-azure B for electrocatalytic application. J. Electroanal. Chem. 2010, 643, 52–57. [Google Scholar] [CrossRef]
- Qi, B.; Peng, X.; Fang, J.; Guo, L. Ordered mesoporous carbon functionalized with polythionine for electrocatalytic application. Electroanalysis 2009, 21, 875–880. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Y.; Liu, G.; Cao, Y.; Gao, H.; Yue, C.; Sheng, N. Electropolymerized toluidine blue O functionalized ordered mesoporous carbon-ionic liquid gel-modified electrode and its low-potential detection of NADH. Sens. Actuators B Chem. 2013, 178, 169–175. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, R.; Jiang, X.; Yang, D. Amperometric determination of NADH at a Nile blue/ordered mesoporous carbon composite electrode. Electrochem. Commun. 2009, 11, 530–533. [Google Scholar] [CrossRef]
- Lu, B.; Bai, J.; Bo, X.; Yang, L.; Guo, L. Electrosynthesis and efficient electrocatalytic performance of poly(neutral red)/ordered mesoporous carbon composite. Electrochim. Acta 2010, 55, 4647–4652. [Google Scholar] [CrossRef]
- Bai, J.; Bo, X.; Qi, B.; Guo, L. A novel polycatechol/ordered mesoporous carbon composite film modified electrode and Its electrocatalytic application. Electroanalysis 2010, 22, 1750–1756. [Google Scholar] [CrossRef]
- Luo, L.; Li, F.; Zhu, L.; Ding, Y.; Deng, D. Electrochemical sensing platform of natural estrogens based on the poly(l-proline)-ordered mesoporous carbon composite modified glassy carbon electrode. Sens. Actuators B Chem. 2013, 187, 78–83. [Google Scholar] [CrossRef]
- Liu, L.; Ndamanisha, J.C.; Bai, J.; Guo, L. Preparation of Cerium (III) 12-tungstophosphoric acid/ordered mesoporous carbon composite modified electrode and its electrocatalytic properties. Electrochim. Acta 2010, 55, 3035–3040. [Google Scholar] [CrossRef]
- Kalate Bojdi, M.; Behbahani, M.; Mashhadizadeh, M.H.; Bagheri, A.; Hosseiny Davarani, S.S.; Farahani, A. Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples. Mater. Sci. Eng. C 2015, 48, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Guo, J.; Guo, L.; Bai, J. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system. Anal. Chem. 2008, 80, 4642–4650. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, L. A sensitive theophylline sensor based on a single walled carbon nanotube-large mesoporous carbon/Nafion/glassy carbon electrode. Anal. Methods 2013, 5, 5785–5791. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y.; Wang, X.; Fang, G.; Wang, S. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor. Biosens. Bioelectron. 2015, 64, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-Z.; Fierke, M.A.; Corrêa da Costa, R.; Gladysz, J.A.; Stein, A.; Bühlmann, P. Highly selective detection of silver in the low ppt range with ion-selective electrodes based on ionophore-doped fluorous membranes. Anal. Chem. 2010, 82, 7634–7640. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-Z.; Joyer, M.M.; Fierke, M.A.; Petkovich, N.D.; Stein, A.; Bühlmann, P. Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts. J. Solid State Electrochem. 2009, 13, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zou, X.U.; Stein, A.; Buhlmann, P. Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact. Anal. Chem. 2014, 86, 7111–7118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, H.; Liu, G.; Wang, Z. Simultaneous and sensitive detection of Cd(II) and Pb(II) using a novel Bismuth film/ordered mesoporous carbon-molecular wire modified graphite carbon paste electrode. Electroanalysis 2017, 29, 497–505. [Google Scholar] [CrossRef]
- Walcarius, A.; Despas, C.; Trens, P.; Hudson, M.J.; Bessière, J. Voltammetric in situ investigation of a MCM-41-modified carbon paste electrode—A new sensor. J. Electroanal. Chem. 1998, 453, 249–252. [Google Scholar] [CrossRef]
- Sayen, S.; Etienne, M.; Bessière, J.; Walcarius, A. Tuning the sensitivity of electrodes modified with an organic-inorganic hybrid by tailoring the structure of the nanocomposite material. Electroanalysis 2002, 14, 1521–1525. [Google Scholar] [CrossRef]
- Jaiswal, N.; Tiwari, I. Recent build outs in electroanalytical biosensors based on carbon-nanomaterial modified screen printed electrode platforms. Anal. Methods 2017, 9, 3895–3907. [Google Scholar] [CrossRef]
- Zhou, M.; Shang, L.; Li, B.; Huang, L.; Dong, S. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosens. Bioelectron. 2008, 24, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Tian, C.; Yang, D.; Jiang, X.; Yang, R. Bioanalytical application of the ordered mesoporous carbon modified electrodes. Electroanalysis 2008, 20, 2518–2525. [Google Scholar] [CrossRef]
- Zhu, L.; Tian, C.; Zhu, D.; Yang, R. Ordered mesoporous carbon paste electrodes for electrochemical sensing and biosensing. Electroanalysis 2008, 20, 1128–1134. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, T.; Huang, H.; Zhang, P. Highly hydrophilic ordered mesoporous carbon-organic polymer composite and its application in direct electrochemistry and the possibility of biosensing. J. Appl. Electrochem. 2016, 46, 593–601. [Google Scholar] [CrossRef]
- Lu, X.; Xiao, Y.; Lei, Z.; Chen, J.; Zhang, H.; Ni, Y.; Zhang, Q. A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon. J. Mater. Chem. 2009, 19, 4707–4714. [Google Scholar] [CrossRef]
- Lu, X.; Xiao, Y.; Lei, Z.; Chen, J. Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor. Biosens. Bioelectron. 2010, 25, 244–247. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhou, L.; Nesterenko, E.P.; Nesterenko, P.N.; Paull, B.; Omamogho, J.O.; Glennon, J.D.; Luong, J.H.T. Porous graphitized carbon monolith as an electrode material for probing direct bioelectrochemistry and selective detection of hydrogen peroxide. Anal. Chem. 2012, 84, 2351–2357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode. Biosens. Bioelectron. 2008, 23, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.X.; Wang, Y.G.; Wang, C.X.; Lu, T.H.; Xia, Y.Y. Hemoglobin immobilized on whisker-like carbon composites and its direct electrochemistry. Electrochim. Acta 2008, 53, 4748–4753. [Google Scholar] [CrossRef]
- Pei, S.; Qu, S.; Zhang, Y. Direct Electrochemistry and Electrocatalysis of Hemoglobin at Mesoporous Carbon Modified Electrode. Sensors 2010, 10, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bian, X.; Liao, L.; Zhu, J.; Guo, K.; Kong, J.; Liu, B. Electrochemistry and biosensing activity of cytochrome c immobilized on a mesoporous interface assembled from carbon nanospheres. Microchim. Acta 2012, 178, 277–283. [Google Scholar] [CrossRef]
- Dong, S.; Li, N.; Suo, G.; Huang, T. Inorganic/organic doped carbon aerogels as biosensing materials for the detection of hydrogen peroxide. Anal. Chem. 2013, 85, 11739–11746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Q.; Li, J. Direct electrochemistry and electrocatalysis of myoglobin covalently immobilized in mesopores cellular foams. Biosens. Bioelectron. 2010, 26, 846–849. [Google Scholar]
- Nie, D.; Liang, Y.; Zhou, T.; Li, X.; Shi, G.; Jin, L. Electrochemistry and electrocatalytic of Hemoglobin on FDU-15-Pt mesoporous materials. Bioelectrochem. 2010, 79, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Habibi, B.; Jahanbakhshi, M. Direct electrochemistry of hemoglobin in a renewable mesoporous carbon ceramic electrode: A new kind of hydrogen peroxide biosensor. Microchim. Acta 2015, 182, 957–963. [Google Scholar] [CrossRef]
- Xu, X.; Guo, M.; Lu, P.; Wang, R. Development of amperometric laccase biosensor through immobilizing enzyme in copper-containing ordered mesoporous carbon (Cu-OMC)/chitosan matrix. Mater. Sci. Eng. C 2010, 30, 722–729. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Wu, L.; Chen, J. Direct electrochemical tyrosinase biosensor based on mesoporous carbon and Co3O4 nanorods for the rapid detection of phenolic pollutants. ChemElectroChem 2014, 1, 808–816. [Google Scholar] [CrossRef]
- Jiang, X.; Zhu, L.; Yang, D.; Mao, X.; Wu, Y. Amperometric ethanol biosensor based on integration of alcohol dehydrogenase with Meldola's blue/ordered mesoporous carbon electrode. Electroanalysis 2009, 21, 1617–1623. [Google Scholar] [CrossRef]
- Hua, E.; Wang, L.; Jing, X.; Chen, C.; Xie, G. One-step fabrication of integrated disposable biosensor based on ADH/NAD+/meldola's blue/graphitized mesoporous carbons/chitosan nanobiocomposite for ethanol detection. Talanta 2013, 111, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, J.; Kim, J.; Na, H.B.; Kim, B.; Shin, C.-H.; Kwak, J.H.; Dohnalkova, A.; Grate, J.W.; Hyeon, T.; Kim, H.-S. Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam. Adv. Mater. 2005, 17, 2828–2833. [Google Scholar] [CrossRef]
- You, C.; Xu, X.; Tian, B.; Kong, J.; Zhao, D.; Liu, B. Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions. Talanta 2009, 78, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tu, J.; Zhao, F.; Zeng, B. Direct electrochemistry and biocatalysis of glucose oxidase immobilized on magnetic mesoporous carbon. J. Solid State Electrochem. 2010, 14, 1595–1600. [Google Scholar] [CrossRef]
- Yu, J.; Yu, D.; Zhao, T.; Zeng, B. Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix. Talanta 2008, 74, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Li, X.; Zhang, S.; Kong, J.; Zhao, D.; Liu, B. Electrochemistry and biosensing of glucose oxidase immobilized on Pt-dispersed mesoporous carbon. Microchim. Acta 2009, 167, 109–116. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, Y.; Mao, X.; Cui, X.; Zhu, L. Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite. Sens. Actuators B Chem. 2011, 153, 158–163. [Google Scholar] [CrossRef]
- Wang, L.; Bai, J.; Bo, X.; Zhang, X.; Guo, L. A novel glucose sensor based on ordered mesoporous carbon-Au nanoparticles nanocomposites. Talanta 2011, 83, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yang, H.; Zhu, L.; Ma, Z.; Xing, S.; Lv, Q.; Liao, J.; Liu, C.; Xing, W. Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15. Electrochim. Acta 2009, 54, 4626–4630. [Google Scholar] [CrossRef]
- Dai, M.; Maxwell, S.; Vogt, B.D.; La Belle, J.T. Mesoporous carbon amperometric glucose sensors using inexpensive, commercial methacrylate-based binders. Anal. Chim. Acta 2012, 738, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Lee, D.; Bae, T.-S.; Lee, Y.-S. The electrochemical enzymatic glucose biosensor based on mesoporous carbon fibers activated by potassium carbonate. J. Ind. Eng. Chem. 2015, 25, 192–198. [Google Scholar] [CrossRef]
- Wu, S.; Ju, H.X.; Liu, Y. Conductive mesocellular silica-carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins. Adv. Funct. Mater. 2007, 17, 585–592. [Google Scholar] [CrossRef]
- Haghighi, B.; Karimi, B.; Tavahodi, M.; Behzadneia, H. Electrochemical behavior of glucose oxidase immobilized on Pd-nanoparticles decorated ionic liquid derived fibrillated mesoporous carbon. Electroanalysis 2014, 26, 2010–2016. [Google Scholar] [CrossRef]
- Kim, M., II; Ye, Y.; Won, B.Y.; Shin, S.; Lee, J.; Park, H.G. A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv. Funct. Mater. 2011, 21, 2868–2875. [Google Scholar] [CrossRef]
- You, C.; Yan, X.; Kong, J.; Zhao, D.; Liu, B. Bicontinuous gyroidal mesoporous carbon matrix for facilitating protein electrochemical and bioelectrocatalytic performances. Talanta 2011, 83, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Guo, C.X.; Zhu, Z.; Li, C.M. Ionic liquid/mesoporous carbon/protein composite microelectrode and its biosensing application. Electrochem. Commun. 2009, 11, 2105–2108. [Google Scholar] [CrossRef]
- Teng, F.; Wang, X.; Shen, C. A micro trace heavy metal sensor based on direct prototyping mesoporous carbon electrode. In Proceedings of the 27th IEEE International Conference on Micro Electro Mechanical Systems, San Francisco, CA, USA, 26–30 January 2014; pp. 298–301. [Google Scholar]
- Teng, F.; Wang, X.; Shen, C.; Li, S. A micro glucose sensor based on direct prototyping mesoporous carbon electrode. Microsyst. Technol. 2015, 21, 1337–1343. [Google Scholar] [CrossRef]
- Ghasemi, E.; Shams, E.; Nejad, N.F. Covalent modification of ordered mesoporous carbon with glucose oxidase for fabrication of glucose biosensor. J. Electroanal. Chem. 2015, 752, 60–67. [Google Scholar] [CrossRef]
- Kwon, K.Y.; Kim, J.H.; Youn, J.; Jeon, C.; Lee, J.; Hyeon, T.; Park, H.G.; Chang, H.N.; Kwon, Y.; Ha, S.; et al. Electrochemical activity studies of glucose oxidase (GOx)-based and pyranose oxidase (POx)-based electrodes in mesoporous carbon: Toward biosensor and biofuel cell applications. Electroanalysis 2014, 26, 2075–2079. [Google Scholar] [CrossRef]
- Fu, C.; Yi, D.; Deng, C.; Wang, X.; Zhang, W.; Tang, Y.; Caruso, F.; Wang, Y. A partially graphitic mesoporous carbon membrane with three-dimensionally networked nanotunnels for ultrasensitive electrochemical detection. Chem. Mater. 2017, 29, 5286–5293. [Google Scholar] [CrossRef]
- Xiang, D.; Yin, L.; Ma, J.; Guo, E.; Li, Q.; Li, Z.; Liu, K. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites. Analyst 2015, 140, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, A.; Herkendell, K.; Tel-Vered, R.; Yehezkeli, O.; Woerner, M.; Willner, I. Enzyme-capped relay-functionalized mesoporous carbon nanoparticles: Effective bioelectrocatalytic matrices for sensing and biofuel cell applications. ACS Nano 2013, 7, 11358–11368. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yang, Y.; Gu, H.; Zhou, T.; Shi, G. Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate. Biosens. Bioelectron. 2013, 41, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xu, G.; Gong, L.; Dai, H.; Zhang, S.; Li, Y. An enzyme-assisted electrochemiluminescent biosensor developed on ordere mesoporous carbons substrate for ultrasensitive glyphosate sensing. Electrochim. Acta 2015, 186, 624–630. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, J.-L.; Jin, T.-B.H.; Wang, J.-L.; Zhang, W.-Q.; Hu, Y.-X.; He, P.-G.; Fang, Y.-Z. Preparation of magnetic ordered mesopore carbon composite and its application in direct electrochemistry of Horseradish peroxidase. Electroanalysis 2013, 25, 2159–2165. [Google Scholar] [CrossRef]
- Gong, C.; Shen, Y.; Chen, J.; Song, Y.; Chen, S.; Song, Y.; Wang, L. Microperoxidase-11@PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide. Sens. Actuators B Chem. 2017, 239, 890–897. [Google Scholar] [CrossRef]
- Tang, L.; Zhou, Y.; Zeng, G.; Li, Z.; Liu, Y.; Zhang, Y.; Chen, G.; Yang, G.; Lei, X.; Wu, M. A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol. Analyst 2013, 138, 3552–3560. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tang, L.; Zeng, G.; Zhang, Y.; Li, Z.; Liu, Y.; Chen, J.; Yang, G.; Zhou, L.; Zhang, S. Simultaneous determination of hydroquinone and catechol in compost bioremediation using a tyrosinase biosensor and artificial neural networks. Anal. Methods 2014, 6, 2371–2378. [Google Scholar]
- Dai, M.; Haselwood, B.; Vogt, B.D.; La Belle, J.T. Amperometric sensing of norepinephrine at picomolar concentrations using screen printed, high surface area mesoporous carbon. Anal. Chim. Acta 2013, 788, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, Q.; Guo, Y.; Sun, X.; Wang, X. Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides. RSC Adv. 2016, 6, 24698–24703. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.Y.; Min, K.; Cha, H.J.; Choi, S.S.; Yoo, Y.J. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens. Bioelectron. 2010, 25, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, T.; Liang, B.; Han, D.; Zeng, L.; Zheng, C.; Li, T.; Wei, M.; Liu, A. Sensitive electrochemical microbial biosensor for p-nitrophenylorganophosphates based on electrode modified with cell surface-displayed organophosphorus hydrolase and ordered mesopore carbons. Biosens. Bioelectron. 2014, 60, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lu, X.; Zhang, H.; Chen, J. Amino acid ionic liquid modified mesoporous carbon: A tailor-made nanostructure biosensing platform. ChemSusChem 2012, 5, 1918–1925. [Google Scholar] [CrossRef] [PubMed]
- Kochana, J.; Wapiennik, K.; Knihnicki, P.; Pollap, A.; Janus, P.; Oszajca, M.; Kuśtrowski, P. Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products. Anal. Bioanal. Chem. 2016, 408, 5199–5210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Zhou, Q.; Lin, Y.; Tang, D.; Chen, G.; Tang, D. Simple and sensitive detection of aflatoxin B1 within five minute using a non-conventional competitive immunosensing mode. Biosens. Bioelectron. 2015, 74, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Li, Y.; Cao, W.; Yan, T.; Li, Y.; Du, B.; Wei, Q. A label-free electrochemiluminescence immunosensor based on silver nanoparticle hybridized mesoporous carbon for the detection of Aflatoxin B1. Sens. Actuators B Chem. 2014, 202, 53–59. [Google Scholar] [CrossRef]
- Sun, Z.; Luo, Z.; Gan, C.; Fei, S.; Liu, Y.; Lei, H. Electrochemical immunosensor based on hydrophilic polydopamine-coated Prussian blue-mesoporous carbon for the rapid screening of 3-bromobiphenyl. Biosens. Bioelectron. 2014, 59, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, K.; Sun, Q.; Lin, B.; Lu, D.; Xu, Z.; Hu, C.; Fan, G.; Zhang, S.; Wang, C.; et al. A highly sensitive immunosensor for calmodulin assay based on enhanced biocatalyzed precipitation adopting a dual-layered enzyme strategy. Biosens. Bioelectron. 2014, 56, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Regiart, M.; Fernandez-Baldo, M.A.; Villarroel-Rocha, J.; Messina, G.A.; Bertolino, F.A.; Sapag, K.; Timperman, A.T.; Raba, J. Microfluidic immunosensor based on mesoporous silica platform and CMK-3/poly-acrylamide-co-methacrylate of dihydrolipoic acid modified gold electrode for cancer biomarker detection. Anal. Chim. Acta 2017, 963, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Wu, J.; Ju, H.; Yan, F. Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens. Bioelectron. 2014, 52, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Jia, H.; Guo, Y.; Zhang, H.; Wang, Z.; Sun, X.; Zhao, J. An ultrasensitive aptasensor for chlorpyrifos based on ordered mesoporous carbon/ferrocene hybrid multiwalled carbon nanotubes. RSC Adv. 2016, 6, 58541–58548. [Google Scholar] [CrossRef]
- Yang, J.; Shen, H.; Zhang, X.; Tao, Y.; Xiang, H.; Xie, G. A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres. Biosens. Bioelectron. 2016, 77, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lu, L.; Hua, E.; Jiang, S.; Xie, G. Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchim. Acta 2012, 178, 163–170. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, H.; Deng, G.; Ran, X.; Li, Y.; Xie, X.; Li, C.-P. Immunosensor for prostate-specific antigen using Au/Pd@flower-like SnO2 as platform and Au@mesoporous carbon as signal amplification. RSC Adv. 2015, 5, 74046–74053. [Google Scholar] [CrossRef]
- Tang, L.; Xie, X.; Zhou, Y.; Zeng, G.; Tang, J.; Wu, Y.; Long, B.; Peng, B.; Zhu, J. A reusable electrochemical biosensor for highly sensitive detection of mercury ions with an anionic intercalator supported on ordered mesoporous carbon/self-doped polyaniline nanofibers platform. Biochem. Eng. J. 2017, 117, 7–14. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, L.; Zeng, G.; Zhang, C.; Xie, X.; Liu, Y.; Wang, J.; Tang, J.; Zhang, Y.; Deng, Y. Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon-gold nanoparticles and DNAzyme catalytic beacons. Talanta 2016, 146, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.H.; Matsuda, N.; Qi, Z.M.; Yoshida, T.; Takatsu, A.; Kato, K. Adsorption behavior of cytochrome c, myoglobin and hemoglobin in a quartz surface probed using slab optical waveguide (SOWG) spectroscopy. Anal. Sci. 2003, 19, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Richter, A.G.; Kuzmenko, I. Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations. Langmuir 2013, 29, 5167–5180. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Yan, X.; Kong, J.; Zhao, D.; Liu, B. Direct electrochemistry of myoglobin based on bicontinuous gyroidal mesoporous carbon matrix. Electrochem. Commun. 2008, 10, 1864–1867. [Google Scholar] [CrossRef]
- Hayashi, A.; Kato, K.; Sasaki, K. Immobilization of an enzyme into nano-space of nanostructured carbon and evaluation as electrochemical sensors. J. Nanosci. Nanotechnol. 2015, 15, 7395–7401. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qi, B.; Lu, B.; Bo, X.; Guo, L. Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene. Electrochim. Acta 2011, 56, 3042–3048. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315. [Google Scholar] [CrossRef]
- Sharma, D.; Kanchi, S.; Sabela, M.I.; Bisetty, K. Insight into the biosensing of graphene oxide: Present and future prospects. Arab. J. Chem. 2016, 9, 238–261. [Google Scholar] [CrossRef]
- Kwon, K.Y.; Youn, J.; Kim, J.H.; Park, Y.; Jeon, C.; Kim, B.C.; Kwon, Y.; Zhao, X.; Wang, P.; Sang, B.I.; et al. Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells. Biosens. Bioelectron. 2010, 26, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, A.; Tel-Vered, R.; Fadeev, M.; Cecconello, A.; Willner, I. Metal nanoparticle-loaded mesoporous carbon nanoparticles: electrical contacting of redox proteins and electrochemical sensing applications. Electroanalysis 2015, 27, 2150–2157. [Google Scholar] [CrossRef]
- Trifonov, A.; Tel-Vered, R.; Fadeev, M.; Willner, I. Electrically contacted bienzyme-functionalized mesoporous carbon nanoparticle electrodes: Applications for the development of dual amperometric biosensors and multifuel-driven biofuel cells. Adv. Energy Mater. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, X.; Zeng, Y.; Sun, W. Ordered mesoporous carbon modified carbon ionic liquid electrode for the electrochemical detection of double-stranded DNA. Biosens. Bioelectron. 2010, 25, 2313–2317. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tang, L.; Xie, X.; Zeng, G.; Wang, J.; Deng, Y.; Yang, G.; Zhang, C.; Zhang, Y.; Chen, J. Sensitive impedimetric biosensor based on duplex-like DNA scaffolds and ordered mesoporous carbon nitride for silver(I) ion detection. Analyst 2014, 139, 6529–6535. [Google Scholar] [CrossRef] [PubMed]
- Piro, B.; Reisberg, S. Recent advances in electrochemical immunosensors. Sensors 2017, 139, 794. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Li, Q.; Tang, D.; Chen, G.; Wei, M. Metal platinum-wrapped mesoporous carbon for sensitive electrochemical immunosensing based on cyclodextrin functionalized graphene nanosheets. Electrochim. Acta 2012, 68, 158–165. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, M.; Dong, J.; Ai, S. A novel electrochemical immunosensor based on mesoporous graphitic carbon nitride for detection of subgroup J of Avian Leukosis viruses. Electrochim. Acta 2016, 205, 95–101. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N.; Eskandani, M.; de la Guardia, M.; Omidinia, E. Mesoporous silica materials for use in electrochemical immunosensing. Trends Anal. Chem. 2013, 45, 93–106. [Google Scholar] [CrossRef]
Analyte a | Type of Porous Materials b | Electrode Configuration c | Detection Method | Analytical Performance | Reference | |||
---|---|---|---|---|---|---|---|---|
Procedure d | Technique e | Concentration Range | Det. Limit | |||||
Ascorbic acid Dopamine Uric acid | CMK-1 (KIT-6/PF resin) | GCE/(OMC + Nafion) film | Direct det./EC | DPV | 4 × 10−5–8 × 10−4 M 1 × 10−6–9 × 10−5 M 5 × 10−6–8 × 10−5 M | 2 × 10−5 M 5 × 10−7 M 4 × 10−5 M | [53] | |
Ascorbic acid Dopamine Uric acid | Mesoporous carbon nanofiber | PGE/OMC film | Direct det./EC | DPV | 1 × 10−4–1 × 10−2 M 5 × 10−8–3 × 10−5 M 5 × 10−7–1.2 × 10−4 M | 5 × 10−5 M 2 × 10−8 M 2 × 10−7 M | [54] | |
Ascorbic acid Dopamine Uric acid | Mesoporous carbon nanofiber | GCE/OMC film | Direct det./EC | A | 2 × 10−8–2.25 × 10−3 M 1 × 10−7–7.85 × 10−4 M 2 × 10−8–5.25 × 10−5 M | 1.6 × 10−8 M 1.6 × 10−8 M 1.3 × 10−8 M | [55] | |
Ascorbic acid Dopamine Uric acid | CMK-3 (SBA-15/Furfuryl alcohol) | GCE/OMC film | Direct det./EC | DPV | 8 × 10−5–1.4 × 10−3 M 4 × 10−7–6 × 10−5 M 1 × 10−5–7 × 10−5 M | 1.4 × 10−5 M 2.8 × 10−7 M 1.6 × 10−6 M | [56] | |
Bisphenol A | CMK-3 (SBA-15/sucrose) | IL-CPE + OMC | Acc. (3 min)—det. | LSV | 2 × 10−7–1.5 × 10−4 M | 5 × 10−8 M | [57] | |
Calcium dobesilate | CMK-3 (SBA-15/sucrose) | PGE/OMC film | Direct det./EC | CV | 1 × 10−7–1.3 × 10−3 M | 4.0 × 10−8 M | [58] | |
Capsaicin | Mesoporous cellular foam | CPE + OMC | Acc. (1 min)—det. | DPV | 7.6 × 10−7–1.16 × 10−5 M | 8 × 10−8 M | [59] | |
Carbendazim | CMK-3 (SBA-15/sucrose) | IL-CPE + OMC | Acc. (3 min)—det. | DPV | 1.25–800 µg/L | 0.5 µg/L | [60] | |
Carvedilol | CMK-1 (MCM-48/sucrose) | GCE/OMC film | Direct det. | DPV | 1 × 10−7–2.3 × 10−5 M | 3.4 × 10−8 M | [61] | |
Catechol Hydroquinone | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Acc. (4 min)—det. | LSV | 5 × 10−7–3.5 × 10−5 M 1 × 10−6–3 × 10−5 M | 1 × 10−7 M 1 × 10−7 M | [62] | |
Catechol Hydroquinone | Mesoporous carbon (SBA-15/BMIMPF6) | GCE/(OMC + IL) film | Direct det. | DPV | 1 × 10−7–5 × 10−5 M 1 × 10−7–5 × 10−5 M | 6 × 10−8 M 5 × 10−8 M | [63] | |
Chloramphenicol | CMK-1 (KIT-6/PF resin) | GCE/OMC/Nafion film | Acc. (4 min)—det. | LSV | 5.0 × 10−7–6.0 × 10−5 M | 8.5 × 10−9 M | [64] | |
Chlorogenic acid | DMC (nanosilica/sucrose) | IL-CPE + OMC | Acc. (2 min)—det. | SWV | 2 × 10−8–2.5 × 10−6 M | 1 × 10−8 M | [65] | |
CdII PbII | Mesoporous graphene framework | GCE/(MGF + Nafion) film | Acc. (6 min at −1.2 V)—det. | DPASV | 2–70 µg/L 0.5–110 µg/L | 0.5 µg/L 0.1 µg/L | [66] | |
CuII PbII | CMK-3 (SBA-15/sucrose) | GCE/(OMC + PANI) film | Acc. (2.5 min)—det. | ASV | 1 × 10−8–1 × 10−6 M 2 × 10−8–1 × 10−6 M | 6 × 10−9 M 4 × 10−9 M | [67] | |
l-cysteine | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Direct det./EC | CV | 1.8 × 10−6–2.5 × 10−3 M | 2.0 × 10−9 M | [25] | |
l-cysteine Glutathione | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Direct det./EC | A | 3 × 10−6–1.3 × 10−4 M up to 3 × 10−3 M | 1 × 10−8 M 9 × 10−8 M | [68] | |
DNA bases | purine(G,A) | Mesoporous carbon fibers | GCE/(MCFs + chitosan) film | Direct det./EC | DPV | 2.5 × 10−6–2.0 × 10−5 M 2.5 × 10−5–0.9 × 10−3 M | 4.8 × 10−7 M 2.4 × 10−5 M | [69] |
pyrimidine (T,C) | ||||||||
Dopamine | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Direct det./EC | CV | 4 × 10−5–1 × 10−3 M | - | [23] | |
Epinephrine | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Direct det./EC | A | 1 × 10−7–1.2 × 10−3 M | 3.5 × 10−8 M | [70] | |
Epinephrine | Mesoporous carbon foam | GCE/(MCF + Salep) film | Direct det./EC | DPV | 1 × 10−7–1.2 × 10−6 M | 4.0 × 10−8 M | [71] | |
Estrogens | CMK-3 (SBA-15/sucrose) | GPE/(OMC + graphene) film | Acc. (4 min)—det. | SWV | 5.0 × 10−9–2.0 × 10−6 M | 2.0 × 10−9 M | [72] | |
Folic acid | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Acc. (10 s)—det. | LSV | 5.0 × 10−10–1.0 × 10−7 M | 6.0 × 10−11 M | [73] | |
Glucose | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Direct det./EC | A | 5 × 10−4–5 × 10−3 M | 2 × 10−5 M | [74] | |
Hydroquinone | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Direct det./EC | DPV | 1.0 × 10−7–5.0 × 10−3 M | 3.14 × 10−8 M | [45] | |
Hydroquinone Catechol Resorcinol | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Direct det./EC | A | 1 × 10−5–2 × 10−4 M 1 × 10−5–3 × 10−4 M 1 × 10−5–1.2 × 10−4 M | 7.6 × 10−8 M 1.0 × 10−7 M 9.0 × 10−8 M | [75] | |
Isoniazid | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Direct det./EC | A | 1.0 × 10−7–3.7 × 10−4 M | 8.4 × 10−8 M | [76] | |
Melamine | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Direct det./EC | DPV | 5 × 10−8–7 × 10−6 M | 2.4 × 10−9 M | [77] | |
Methyl parathion | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Acc. (5 min)—det. | LSV | 9 × 10−8–6.1 × 10−5 M | 7.6 × 10−9 M | [78] | |
Morphine | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Acc. (5 min)—det. | CV | 1 × 10−7–2 × 10−5 M | 1 × 10−8 M | [79] | |
Morphine | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Direct det./EC | A | 2 × 10−7–1.98 × 10−4 M | 3 × 10−8 M | [80] | |
NADH | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Direct det./EC | A | 5 × 10−6–9 × 10−4 M | 1.6 × 10−6 M | [81] | |
NADH | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Direct det./EC | A | 2 × 10−6–1.1 × 10−3 M | 1.0 × 10−6 M | [82] | |
NADH | CMK-1 (KIT-6/sucrose) | GCE/(OMC + Nafion) film | Direct det./EC | A | 3.0 × 10−6–1.4 × 10−3 M | 1.0 × 10−6 M | [83] | |
Nitrite | HONC (SBA-15/Furfuryl alcohol) | GCE/OMC film | Acc. (2 min)—det. | DPV | 7.0 × 10−6–1.6 × 10−3 M | - | [84] | |
Nitroaromatic (TNT) | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Acc. (2 min)—det. | AdsSV | 1–50 ppb | 0.2 ppb | [85] | |
Nitroaromatic (TNT, TNB, DNT, DNB) | CMK-3 (SBA-15/sucrose) | CDE/OMC/Nafion film | Direct det./EC | CE-A | 8.4–5.0 µg/L | 3–4.7 µg/L | [86] | |
Nitrobenzene | Bi-modal MMPCM | GCE/OMC film | Acc.—det. | LSV | 2 × 10−7–4 × 10−5 M | 8 × 10−9 M | [87] | |
Nitrophenols | o-NP | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Direct det./EC | DPV | 5 × 10−7–1.0 × 10−4 M 1 × 10−6–1.0 × 10−4 M 2 × 10−6–9.0 × 10−5 M | 8 × 10−8 M 6 × 10−8 M 1 × 10−7 M | [88] |
m-NP | ||||||||
p-NP | ||||||||
Nitroxoline | CMK-3 (SBA-15/sucrose) | CPE + OMC | Acc. (4 min)—det. | SW-AdsSV | 1.0 × 10−11–1.0 × 10−7 M | 3.0 × 10−12 M | [89] | |
Paraoxon parathion methyl parathion | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Acc. (6 min at −0.6 V)—det. | DPV | 1.0 × 10−8–2.0 × 10−5 M 1.5 × 10−8–1.0 × 10−5 M 1.0 × 10−8–1.0 × 10−5 M | 1.9 × 10−9 M 3.4 × 10−9 M 2.1 × 10−9 M | [90] | |
PbII | CMK-3 (SBA-15/sucrose) | GCE/(OMC + Nafion) film | Acc. (5 min)—det. | ASDPV | 2 × 10−8–2 × 10−6 M | 4.6 × 10−9 M | [91] | |
PbII | CMK-3 (SBA-15/sucrose) | CILE/(OMC + ENIM-BF4 + chitosan) film | Acc. (200 s)—det. | ASDPV | 5 × 10−8–1.4 × 10−6 M | 2.5 × 10−8 M | [92] | |
Poly-phenols | 1,4-DHB | Graphitized mesoporous carbon | GCE/OMC film | Direct det. | DPV | 4.0 × 10−5–2.5 × 10−4 M 2.5 × 10−5–2.0 × 10−4 M 2.5 × 10−5–2.0 × 10−4 M | 9.1 × 10−7 M 1.31 × 10−6 M 6.7 × 10−7 M | [93] |
1,2-DHB | ||||||||
1,3-DHB | ||||||||
Prednisolone | OMC | GCE/OMC film | Direct det./EC | SWV | 6 × 10−8–4.0 × 10−5 M | 5.7 × 10−8 M | [94] | |
Ractopamine | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Direct det./EC | DPV | 8.5 × 10−8–8.0 × 10−6 M | 6 × 10−8 M | [95] | |
Riboflavin | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Acc.—det. | CV | 4.0 × 10−7–1.0 × 10−6 M | 2 × 10−8 M | [96] | |
Rutin | DMC | IL-CPE + OMC | Acc. (7 min)—det. | SWV | 8 × 10−9–4.0 × 10−6 M | 1.17 × 10−9 M | [97] | |
Sudan I | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Acc.—det. | ASDPV | 4.0 × 10−7–6.6 × 10−5 M | 2.44 × 10−9 M | [98] | |
Tirapazamine | CMK-3 (SBA-15/sucrose) | PGE/OMC film | Acc.—det. | DPV | 5 × 10−11–1.5 × 10−5 M | 2.0 × 10−11 M | [99] | |
Triclosan | CMK-3 (SBA-15/sucrose) | SPCE/(OMC + chitosan) film | Direct det. | SWV | 0.8–40 µg/L | 0.24 µg/L | [43] | |
l-tyrosine | CMK-3 (SBA-15/Furfuryl alcohol) | GCE/OMC film | Direct det./EC | DPV | 1.5 × 10−5–9 × 10−4 M | 1.0 × 10−5 M | [100] | |
Uric acid | CMK-3 (SBA-15/sucrose) | GCE/OMC film | Direct det./EC | CV | 7 × 10−6–1.5 × 10−4 M | 2.0 × 10−6 M | [101] | |
Uric acid | CMK-3 (SBA-15/sucrose) | PGE/OMC film | Direct det./EC | A | 1.0 × 10−6–1.0 × 10−4 M | 4.0 × 10−7 M | [102] | |
Xanthine Hypoxanthine Uric acid | Graphitized mesoporous carbon | GCE/OMC film | Direct det./EC | DPV | 2 × 10−5–2.4 × 10−4 M 2 × 10−5–3.2 × 10−4 M 2 × 10−5–4.0 × 10−4 M | 3.51 × 10−7 M 3.88 × 10−7 M 1.10 × 10−7 M | [44] |
Analyte a | Porous Materials | Electrode Configuration d | Detection Method | Analytical Performance | Reference | |||
---|---|---|---|---|---|---|---|---|
Type b | Modifier c | Procedure e | Technique f | Concentration Range | Det. Limit | |||
Acetylcholine | CMK-3 (SBA-15/sucrose) | Ni-Al LDH | GCE/OMC/LDH film | Mediated EC | A | 2 × 10−6–4.92 × 10−3 M | 4.2 × 10−8 M | [158] |
Ag+ | Macroporous carbon | Ag+ ionophores | OMC/membrane | Direct det. | P | 10−10–10−11 M | 3.8 × 10−11 M | [187] |
Ascorbic acid | CMK-3 (SBA-15/sucrose) | Ferrocene-COOH | GCE/(OMC + Nafion) film | Mediated EC | A | 5 × 10−5–3.5 × 10−4 M | 9 × 10−6 M | [112] |
Ascorbic acid Dopamine Uric acid | N-PCNPs (ZIF-8/Zn(Ac)2/methylimidazole) | N (nitrogen) | GCE/OMC film | Supported EC | DPV | 8 × 10−5–2 × 10−3 M 5 × 10−7–3 × 10−5 M 4 × 10−6–5 × 10−5 M | 7.4 × 10−7 M 1.1 × 10−8 M 2.1 × 10−8 M | [107] |
Ascorbic acid Dopamine Uric acid | N-doped OMC (SBA-15/poly(ethylenediamine)) | N (nitrogen) | GCE/(OMC + Nafion) film | Direct det./EC | SWV | 1 × 10−6–7 × 10−4 M 1 × 10−9–3 × 10−5 M 1 × 10−8–8 × 10−5 M | 1 × 10−8 M 1 × 10−9 M 1 × 10−8 M | [108] |
Ascorbic acid Dopamine Uric acid | N-doped OMC (3-amino phenol/formaldehyde resin) | N (nitrogen) | GCE/OMC film | Direct det./EC | SWV | 1.0 × 10−6–1.2 × 10−4 M 5 × 10−8–1.45 × 10−5 M 2.0 × 10−6–3.0 × 10−5 M | 1.0 × 10−7 M 2.0 × 10−8 M 1.4 × 10−7 M | [109] |
6-Benzylaminopurine | CMK-3 (SBA-15/sucrose) | Platinum NPs | GCE/(OMC + Nafion) film | Supported EC | A | 5 × 10−8–2.4 × 10−5 M | 5 × 10−9 M | [139] |
Bromate Iodate Nitrite Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | P2Mo18 | GCE/(OMC + PVA) film | Mediated EC | A | 2.77 × 10−6–4 × 10−3 M 1.13 × 10−6–6.2 × 10−3 M 5.34 × 10−6–2.4 × 10−2 M 1.6 × 10−4–4.4 × 10−2 M | 9.22 × 10−7 M 3.77 × 10−7 M 1.78 × 10−6 M 5.34 × 10−5 M | [24] |
Captopril | OMC | CuHCF | GCE/OMC/CuHCF film | Direct det./EC | CV | 1.0 × 10−5–2.7 × 10−3 M | 1.2 × 10−6 M | [122] |
Catechol | N-doped OMC (SBA-15/ethyl violet) | N (nitrogen) | GCE/OMC film | Direct det./EC | DPV | 6 × 10−6–7 × 10−5 M | 0.9 × 10−6 M | [49] |
CdII | OMC | Sn-Pb NPs | GCE/OMC film | Acc.—det. | SWASV | 1–140 µg∙L−1 | 0.36 µg∙L−1 | [156] |
Ciprofloxacin | CMK-3 (SBA-15/sucrose) | CTAB (0.1 mM) | CPE + OMC (15%) | Acc. (4 min)—det. | LS-AdsSV | 5.0 × 10−9–2.0 × 10−5 M | 1.5 × 10−9 M | [133] |
Citrinin | CMK-3 (SBA-15/sucrose) | Gold NPs | AuE/OMC/MIP film | Direct det. | EQCM | 6.0 × 10−9–2.0 × 10−7 M | 1.8 × 10−9 M | [140] |
Cl− | CIM carbon | IL-PVC | OMC-IL-PVC membrane | Direct detection | P | 3.16 × 10−4–1 × 10−1 M | - | [130] |
Dimetridazole | CMK-3 (SBA-15/sucrose) | Gold NPs/MIP | GCE/GO/OMC/MIP film | Acc. (3 min)—det. | DPV | 2.0 × 10−9–2.5 × 10−7 M | 5.0 × 10−10 M | [128] |
l-Dopa | Large mesoporous C | CoHCF | GCE/OMC film | Mediated EC | A | 1.0 × 10−7–1.9 × 10−3 M | 1.7 × 10−8 M | [123] |
Dopamine | CMK-3 (SBA-15/sucrose) | unmodified -COOH -NH2 | GCE/OMC film | Direct det. | DPV | 5 × 10−8–1.0 × 10−6 M 2.0 × 10−7–1.96 × 10−6 M 6 × 10−7–1.26 × 10−5 M | 4.5 × 10−9 M 4.4 × 10−8 M 3.3 × 10−7 M | [50] |
Dopamine | OMC | Ru(bpy)32+ | GCE/(OMC + Nafion) film | Direct det. | ECL | 5.0 × 10−9–5.0 × 10−4 M | 1.7 × 10−9 M | [114] |
Dopamine, Uric acid | CMK-3 (SBA-15/sucrose) | -COOH, IL | OMC + IL mixture rubbed onto GCE | Acc.—det. | DPV | 1 × 10−7–5 × 10−4 M 1 × 10−7–1 × 10−4 M | 4.1 × 10−9 M 2.5 × 10−9 M | [131] |
Estradiol | CMK-3 (SBA-15/sucrose) | Poly(l-proline) | GCE/(OMC + l-proline) film | Mediated EC | SWV | 1.0 × 10−8–2.0 × 10−6 M | 5.0 × 10−9 M | [181] |
Ethanol, Glycine | CMK-3 (SBA-15/sucrose) | Ni(OH)2 NPs | GCE/(OMC + Nafion) film | Mediated EC | A | up to 8.0 × 10−2 M up to 3.2 × 10−3 M | 4.77 × 10−6 M 2.6 × 10−6 M | [159] |
Glucose | CMK-3 (SBA-15/sucrose) | Platinum NPs | GCE/(OMC + Nafion) film | Supported EC | A | 5 × 10−6–7.5 × 10−3 M | 3 × 10−6 M | [141] |
Glucose | CMK-3 (SBA-15/sucrose) | NiO | GCE/(OMC + Nafion) film | Supported EC | A | 2 × 10−6–1 × 10−3 M | 6.5 × 10−7 M | [160] |
Glucose | Onion-like OMC | PtPd NPs | GCE/(OMC + Nafion) film | Supported EC | A | 1.5 × 10−3–1.2 × 10−2 M | - | [157] |
Glucose | CMK-3 (SBA-15/Furfuryl alcohol) | CuO NPs | GCE/(OMC + Nafion) film | Supported EC | A | 1 × 10−5–1 × 10−3 M | - | [161] |
Glucose | OMC (colloidal SiO2/F127/phenolic resin) | CuO NPs | GCE/OMC film | Supported EC | A | 4 × 10−7–7.3 × 10−3 M | 1 × 10−7 M | [162] |
Glucose | Carbon aerogel (resorcinol/formaldehyde) | Iron/iron oxide | CPE + OMC | Supported EC | A | 1 × 10−3–5.0 × 10−2 M | - | [163] |
Glucose | IFMC | Palladium NPs | GCE/OMC/Nafion film | Supported EC | A | 1 × 10−3–5.5 × 10−2 M | 2 × 10−4 M | [142] |
Glucose | OMC | Co3O4 nanocrystals | GCE/(OMC + Nafion) film | Supported EC | A | 1 × 10−5–0.8 × 10−3 M | 1 × 10−6 M | [164] |
Glutathione | CMK-3 (SBA-15/sucrose) | Co oxide (Co3O4) | GCE/(OMC + Nafion) film | Mediated EC | A | 4 × 10−6–2.8 × 10−5 M | 1.4 × 10−10 M | [165] |
Guanine Adenine | CMK-3 (SBA-15/sucrose) | CePW | GCE/OMC film | Mediated EC | CV | 4 × 10−6–1.9 × 10−3 M 4.0 × 10−6–7.0 × 10−4 M | 5.7 × 10−9 M 7.45 × 10−8 M | [182] |
H+ (pH sensor) | OMC | RuO2 film | OMC-SPE | Direct detection | P | 1 × 10−10–1 × 10−4 M | - | [166] |
HgII | Mesoporous C nanofiber | BIM ligand | GCE/(OMC+BIM+Nafion) film | Acc. (15 min)—det. | DPASV | 5 × 10−9–5 × 10−7 M | 3 × 10−10 M | [127] |
Hydrazine | CMK-3 (SBA-15/sucrose) | PDDA—Pt NPs | GCE/(OMC + Nafion) film | Supported EC | A | 5 × 10−6–1.35 × 10−4 M | 1.7 × 10−7 M | [143] |
Hydrazine | CMK-3 (SBA-15/sucrose) | CeHCF | GCE/(OMC + Nafion) film | Mediated EC | A | 1 × 10−6–1.63 × 10−4 M | 1 × 10−7 M | [124] |
Hydrazine | OMC | CeO2 NPs | GCE/OMC/Nafion film | Supported EC | A | 4.0 × 10−8–1.92 × 10−4 M | 1.2 × 10−8 M | [167] |
Hydrazine | OMC | Curcumin | GCE/OMC film | Direct det./EC | A | 1.25 × 10−5–2.25 × 10−4 M | 3.9 × 10−7 M | [120] |
Hydrazine | CMK-1 (MCM-48/sucrose) | SDS—Pd NPs | GCE/(OMC + Nafion) film | Supported EC | A | 3 × 10−6–1 × 10−3 M | 1.16 × 10−6 M | [134] |
Hydrazine Hydrogen peroxide Nitrobenzene | CMK-1 (MCM-48/sucrose) | Platinum NPs | GCE/(OMC + Nafion) film | Supported EC | A | 1 × 10−5–8.4 × 10−4 M 5 × 10−6–5.4 × 10−3 M 4 × 10−6–6.7 × 10−4 M | 3.41 × 10−6 M 1.09 × 10−6 M 3.82 × 10−6 M | [144] |
Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | Fe oxide (Fe3O4) | GCE/(OMC + Nafion) film | Mediated EC | A | 7 × 10−6–4 × 10−3 M | 3.6 × 10−8 M | [168] |
Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | Cu2S | GCE/(OMC + Nafion) film | Mediated EC | A | 1 × 10−6–3.03 × 10−3 M | 2 × 10−7 M | [169] |
Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | Gold NPs | GCE/OMC film | Supported EC | A | 2.0 × 10−6–3.92 × 10−3 M | 4.9 × 10−7 M | [145] |
Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | Platinum NPs | GCE/OMC-PIL film | Supported EC | A | 1.0 × 10−7–3.2 × 10−3 M | 8 × 10−8 M | [146] |
Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | Palladium NPs | GCE/(OMC + Nafion) film | Supported EC | A | 7.5 × 10−6–1.0 × 10−2 M | 1.0 × 10−6 M | [147] |
Hydrogen peroxide | LMC (CaCO3/sucrose) | Co(salen) | GCE/(OMC + Nafion) film | Mediated EC | A | 2.0 × 10−6–8.9 × 10−3 M | 8.5 × 10−7 M | [117] |
Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | MnO2 | GCE/(OMC + Nafion) film | Supported EC | A | 5 × 10−7–6 × 10−4 M | 7.8 × 10−8 M | [170] |
Hydrogen peroxide | OMC (SBA-15/glucose) | Silver NPs | GCE/OMC film | Supported EC | A | 0.1 × 10−6–4.1 × 10−5 M | 5.0 × 10−8 M | [148] |
Hydrogen peroxide | CMK-5 (SBA-15/furfuryl alcohol) | Fe-PTPY (grafted or adsorbed) | GCE/OMC film | Mediated EC | A | 1 × 10−5–1.3 × 10−2 M | 2 × 10−6 M | [118] |
Hydrogen peroxide | OMC | pFeMOF | GCE/(OMC + Nafion) film | Supported EC | A | 5 × 10−7–7.05 × 10−5 M | 4.5 × 10−7 M | [116] |
Hydrogen peroxide | OMC (colloidal SiO2/F127/phenolic resin) | Hemin | GCE/(OMC + Nafion + hemin) film | Direct det./EC | A | 2.0 × 10−6–2.5 × 10−4 M | 3 × 10−7 M | [115] |
Hydrogen peroxide Ascorbic acid | CMK-3 (SBA-15/sucrose) | Prussian Blue | GCE/OMC film | Mediated EC | A | 4 × 10−4–5.6 × 10−3 M 1 × 10−4–1.4 × 10−3 M | 1 × 10−6 M 2.6 × 10−7 M | [125] |
Hydrogen peroxide Glucose | CMK-3 (SBA-15/sucrose) | Platinum NPs | GCE/(OMC + Nafion) film | Supported EC | A | 2 × 10−6–4.21 × 10−3 M 5 × 10−4–4.5 × 10−3 M | 1.2 × 10−6 M 1.3 × 10−4 M | [149] |
Hydrogen peroxide Glucose | Macroporous carbon | CuO nanoneedles | GCE/OMC film | Supported EC | A | 1.0 × 10−5–6.5 × 10−3 M 3.5 × 10−6–3.0 × 10−4 M | 2 × 10−7 M 2 × 10−6 M | [171] |
Hydrogen peroxide Hydrazine | Onion-like OMC | Palladium NPs | GCE/(OMC + Nafion) film | Supported EC | A | 1.0 × 10−7–6.1 × 10−3 M 2.0 × 10−8–7.1 × 10−5 M | 7.9 × 10−8 M 1.49 × 10−8 M | [150] |
Hydrogen peroxide NADH Acetaminophenol | CMK-3 (SBA-15/sucrose) | POMs/gold NPs | GCE/Au@POMs/OMC film | Supported EC | A | 1 × 10−6–2.0 × 10−5 M 1 × 10−6–1.1 × 10−4 M 1 × 10−6–5.7 × 10−5 M | 3.6 × 10−7 M 4.1 × 10−7 M 2.9 × 10−7 M | [119] |
Hydrogen peroxide Nitrite | LMC (CaCO3/sucrose) | PDDA/gold NPs | GCE/OMC-PDDA-Ag- or Au-NPs/chitosan film | Supported EC | A | 2.0 × 10−5–9.62 × 10−3 M 5 × 10−6–7.24 × 10−3 M | 6.5 × 10−6 M 4.2 × 10−7 M | [151] |
Hydroquinone catechol | N,S dual-doped OMC | N (nitrogen) and S (sulfur) | GCE/OMC film | Direct det./EC | DPV | 1 × 10−6–1.1 × 10−4 M 1 × 10−6–1.1 × 10−4 M | 5.6 × 10−8 M 2.1 × 10−7 M | [111] |
Iodate | OMC (MCM-41/sucrose) | Silver NPs | GCE/OMC film | Supported EC | A | 1.5 × 10−5–4.43 × 10−3 M | 3.01 × 10−6 M | [152] |
Luminol Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | PANI | GCE/OMC/PANI film | Direct det. | ECL | 1.0 × 10−7–5.0 × 10−5 M 1.0 × 10−7–1.0 × 10−5 M | 8.8 × 10−10 M | [173] |
K+ | Macroporous carbon | K+ ionophore | Ni/OMC/membrane | Direct det. | P | 1.0 × 10−7–3.7 × 10−4 M | 10−6.2 M | [26] |
K+ | CIM carbon | K+ ionophore | Au/(OMC + PVC) film/valinomycine membrane | Direct det. | P | 1 × 10−5–1 × 10−1 M | 10−5.6 M | [189] |
K+ Ag+ | Macroporous carbon | K+ ionophore | Ni/OMC/membrane | Direct det. | P | 10−6–10−3 M 10−10–10−8 M | 1.6 × 10−7 M 4.0 × 10−11 M | [188] |
Metolcarb | CMK-3 | Prussian Blue | GCE/OMC film | Acc. (5 min)— Mediated EC | LSV | 5.0 × 10−10–1.0 × 10−4 M | 9.3 × 10−11 M | [186] |
2-mercaptoethanol | CMK-3 (SBA-15/sucrose) | DDAB/bi-CoPc | GCE/DDAB/OMC film | Mediated EC | A | 2.5 × 10−6–1.4 × 10−4 M | 6 × 10−7 M | [126] |
NADH | CMK-3 (SBA-15/sucrose) | C60 | GCE/OMC film | Direct det./EC | A | 1.0 × 10−7–9.0 × 10−4 M | 3 × 10−8 M | [184] |
NADH | CMK-3 (SBA-15/sucrose) | Nile Blue | GCE/OMC film | Mediated EC | A | 5.0 × 10−5–1.25 × 10−3 M | 1.2 × 10−6 M | [178] |
NADH | CMK-3 (SBA-15/sucrose) | Toluidine Blue O | GCE/(OMC + IL) film | Mediated EC | A | 1.0 × 10−6–1.0 × 10−3 M | 4 × 10−7 M | [177] |
NADH | CMK-3 (SBA-15/sucrose) | Polythionine | GCE/OMC film | Mediated EC | A | 3.4 × 10−6–8.5 × 10−4 M | 5.1 × 10−8 M | [176] |
NADH | CMK-3 (SBA-15/sucrose) | Poly(Azure B) | GCE/OMC film | Mediated EC | A | 3.0 × 10−6–1.0 × 10−3 M | 1.0 × 10−7 M | [175] |
NADH | CMK-3 (SBA-15/sucrose) | Poly(neutral red) | GCE/OMC film | Mediated EC | A | up to 1.6 × 10−3 M | 1.5 × 10−7 M | [179] |
NADH | CMK-3 (SBA-15/sucrose) | Polycatechol | GCE/OMC film | Mediated EC | A | up to 2.5 × 10−4 M | 2 × 10−7 M | [180] |
Nitrobenzene | N-doped OMC (SBA-15/(NH4)2S2O8/aniline) | Ag NPs | GCE/(OMC + Nafion) film | Supported EC | DPV | 6.6 × 10−8–1.1 × 10−6 M | 6.6 × 10−9 M | [153] |
Ofloxacin | MCNs | MIP | GCE/MCNs@MIP | Acc.—det. | CV | 5 × 10−7–1 × 10−4 M | 8.0 × 10−8 M | [129] |
Omeprazole | OMC (fructose/F127) | MPTES | CPE + OMC (5%) | Acc. (60 s)—det. | DPV | 0.25 × 10−9–2.5 × 10−7 M | 0.04 × 10−9 M | [183] |
Oxygen (dissolved) | CMK-3 (SBA-15/sucrose) | TTF | GCE/(OMC + chitosan + Nafion) film | Direct det./EC | A | 7 × 10−6–1.93 × 10−4 M | 3.9 × 10−7 M | [121] |
PbII | Oxidized OMC (F127, resorcinol/formaldehyde) | Fe3O4 | Graphite rod/OMC film | Acc. (6 min)—det. | SWASV | 0.005–0.445 mg∙L−1 | 1.57 µg∙L−1 | [106] |
PbII CdII | CMK-3 (SBA-15/sucrose) | Bismuth(III) | CPE + OMC | Acc. (150 s)—det. | SWASV | 1–70 µg∙L−1 | 0.08 µg∙L−1 0.07 µg∙L−1 | [190] |
PbII CdII | HMCS | Bismuth oxide | GCE/(OMC + chitosan) film | Acc. (150 s)—det. | SWASV | 3 × 10−12–2.1 × 10−11 M 3 × 10−12–2.1 × 10−11 M | 1.7 × 10−12 M 1.6 × 10−12 M | [172] |
PbII CdII | CMK-3 (SBA-15/sucrose) | PANI-MES | GCE/OMC/PANI-MES film | Acc. (150 s)—det. | DPASV | 1 × 10−9–1.2 × 10−7 M | 1.6 × 10−10 M 2.6 × 10−10 M | [174] |
Quercetin | OMC | IL-MoS2-Pd NPs | GCE/OMC film | Supported EC | LSV | 2.0 × 10−8–1.0 × 10−5 M | 8.0 × 10−9 M | [132] |
Ractopamine | OMC | Electrodeposited Au | GCE/OMC film | Supported EC | DPV | 3 × 10−8–7.5 × 10−5 M | 4.4 × 10−9 M | [155] |
Ractopamine | OMC | Electrodeposited Au NPs | SPCE/OMC/AuNPs/MIM film | Acc. (100 s)—det. | DPV | 5 × 10−11–1 × 10−9 M | 4.2 × 10−11 M | [154] |
Superoxide anion | N-doped HMCS (silica/resorcinol/formaldehyde) | N (nitrogen) | SPCE/OMC film | Direct det./EC | A | 2.0 × 10−5–4.8 × 10−4 M | 2.2 × 10−6 M | [110] |
Theophylline | LMC (CaCO3/sucrose) | SWCNT | GCE/(OMC-SWCNT + Nafion) film | Acc. (100 s)—det. | DPV | 3 × 10−7–3.8 × 10−5 M | 8 × 10−8 M | [185] |
Uric acid | CMK-3 (SBA-15/sucrose) | Ferrocene-COOH | GCE/(OMC + Nafion) film | Mediated EC | A | 6 × 10−5–3.9 × 10−4 M | 1.8 × 10−6 M | [113] |
Analyte | Porous Materials | Immobilized | Electrode Configuration d | Analytical Performance | Stability | Reference | ||
---|---|---|---|---|---|---|---|---|
Type (Template, C Source) a | Modifier b | Biomolecule(s) c | Concentration Range | Det. Limit | ||||
Aflatoxin B1 | MCNs | Thionine | AFB1 antibody | GCE/OMC-Thi/GluA/AFB1 + BSA | 10–2 × 104 ng∙L−1 | 3 ng∙L−1 | 20 days (100%) 50 days (92%) | [247] |
Aflatoxin B1 | MCF | Ag NPs | AFB1 antibody | GCE/OMC/Ag/luminol/AFB1 + BSA | 0.1–5 × 104 ng∙L−1 | 50 pg∙L−1 | - | [248] |
3-Bromobiphenyl | CMK-3 (SBA-15/sucrose) | PB-PD | Ab2 antibody | ITO/OMC-PB-PD/multi-HRP-DHCNTs-Ab2 | 5 × 10−12–2 × 10−9 M | 2.25 × 10−12 M | 7 days (96%) 60 days (83%) | [249] |
Calmodulin (CaM) | HMPC | PAupc | Ab1 antibody + HRP | GCE/(OMC-chitosan)/Ab1 + BSA + HRP-PAupc-Ab1 | 5–105 ng∙L−1 | 1.5 ng∙L−1 | - | [250] |
Cancer biomarker (EGFR) | CMK-3 (SBA-15/sucrose) | Poly(AC-co-MDHLA) | EGFR antigenC | AuE/(OMC + poly(AC-co-MDHLA)) + anti-EGFR/AMS | 10–5 × 104 ng∙L−1 | 3 ng∙L−1 | - | [251] |
Catechol | CMK-3 (SBA-15/sucrose) | Copper | LAC | Au/(OMC-Cu/LAC + chitosan) | 6.7 × 10−7–1.57 × 10−5 M | 6.7 × 10−7 M | 30 days (95%) | [209] |
Catechol | GMC (SiO2 nanospheres/PS) | Co3O4 nanorods | TYR | GCE/OMC-TYR-Co3O4/chitosan | 5.0 × 10−8–1.3 × 10−5 M | 2.5 × 10−8 M | 2 months (86%) | [210] |
Carcinoembryonic antigen | MCF | Au NPs | Ab2 antibody | GCE/(GO/chitosan/BSA) (OMC/Au/Ab2) | 0.05–103 ng∙L−1 | 24 pg∙L−1 | 15 days (92%) | [252] |
Chlorpyrifos | OMC | Fc@MWCNTs-CS | Aptamer | GCE/(OMC-chitosan)/Fc@MWCNTs-CS/(Apt + BSA) | 5–105 µg∙L−1 | 0.33 µg∙L−1 | 2 weeks (96%) 4 weeks (89%) | [253] |
Ethanol | CMK-3 (SBA-15/sucrose) | Meldola’s Blue | ADH | GCE/OMC-MB/(ADH + BSA + GluA) | up to 6 × 10−3 M | 1.9 × 10−5 M | 15 days (22%) | [211] |
Ethanol NADH | GMC | Meldola’s Blue | ADH | SPE/(OMC + chitosan + MB + ADH) | 5 × 10−4–1.5 × 10−3 M 1.0 × 10−5–4.1 × 10−4 M | 8.0 × 10−5 M 1.86 × 10−7 M | 40 days (91%) | [212] |
Ethanol Glucose | CMK-3 (SBA-15/sucrose) | - | ADH GOD | GCE/OMC/(enzyme + BSA)/GluA/Nafion | 3.0 × 10−4–1.3 × 10−2 M 5.0 × 10−4–1.5 × 10−2 M | 1.0 × 10−4 M 1.5 × 10−4 M | 1 month (91%) | [194] |
Glucose | MCF (MSU-F/furfurylalcohol) | - | GOD | GCE/(OMC-GOD + Nafion) | up to 7 × 10−3 M | 7 × 10−5 M | 20 days | [213] |
Glucose | 2D-OMC (SBA-15/sucrose) 3D-OMC (FDU-5/sucrose) | - | GOD | GCE/(OMC-GOD + Nafion) | up to 7.94 × 10−3 M up to 9.90 × 10−3 M | 1.0 × 10−5 M 1.0 × 10−5 M | 45 days (86%) | [214] |
Glucose | CMK-3 (SBA-15/furfuryl alcohol) | Iron oxide | GOD | Pt/(OMC-Fe3O4 + GOD)/Nafion | 2 × 10−4–1.0 × 10−2 M | 8 × 10−5 M | 1 week (90%) | [215] |
Glucose | CMK-3 (SBA-15/sucrose) | Pt NPs | GOD | GCE/(OMC-Pt + gelatin + GOD + GluA) | 4 × 10−5–1.22 × 10−2 M | 1 × 10−6 M | 30 days (95%) | [216] |
Glucose | CMK-3 (SBA-15/sucrose) | Pt NPs | GOD | GCE/(OMC-Pt + Nafion) imp. GOD | up to 7.94 × 10−3 M | 1 × 10−6 M | 27 days (31%) | [217] |
Glucose | CMK-3 (SBA-15/sucrose) | Pt NPs | GOD | Au/OMC-Pt/PPy-GOD | 5 × 10−5–3.7 × 10−3 M | 5 × 10−5 M | 15 days (50%) | [218] |
Glucose | CMK-3 (SBA-15/sucrose) | Au NPs | GOD | GCE/OMC-Au/GOD | 5.0 × 10−5–2.2 × 10−2 M | - | 30 days (88%) | [219] |
Glucose | FDU-15 | - | GOD | GCE/(OMC-GOD + Nafion) | 1 × 10−4–1 × 10−3 M | 9 × 10−5 M | - | [220] |
Glucose | FDU-15 or FDU-16 (F127-resol) | - | GOD | SPE (OMC + PHBMA)/GOD | 5–100 mg∙L−1 | - | - | [221] |
Glucose | ACF | - | GOD | SPE/OMC/GOD | up to 20 mM | - | 5 days (68%) | [222] |
Glucose | MSCF | - | GOD | GCE/(MSCF/GOD + Nafion) | 5.0 × 10−5–5.0 × 10−3 M | 3.4 × 10−5 M | 2 weeks (94%) | [223] |
Glucose | IFMC | Pd NPs | GOD | GCE/(Pd@IFMC/GOD/Nafion) | 5 × 10−4–10−2 M | 1.9 × 10−4 M | 2 weeks (91%) | [224] |
Glucose | LMC (CaCO3/sucrose) | Co(salen) | GOD | GCE/OMC/Co(salen)/GOD | 5 × 10−4–1.3 × 10−2 M | 2 × 10−4 M | 10 days (92%) | [117] |
Glucose | MCF (MSU-F/furfuryl alcohol) | Fe3O4 NPs | GOD | CPE (OMC-Fe3O4 + GOD) | 5 × 10−4–1.0 × 10−2 M | 2 × 10−4 M | 2 months (90%) | [225] |
Glucose | BGMC (KIT-6/sucrose) | - | GOD | GCE/(OMC/GOD + Nafion) | up to 7.49 × 10−3 M | 1.0 × 10−5 M | 30 days (95%) | [226] |
Glucose | CMK-3 (SBA-15/sucrose) | - | GOD | CPE (OMC + GOD) | up to 15 × 10−3 M | 7.2 × 10−5 M | - | [196] |
Glucose | OMC | - | GOD | µCPE (OMC + GOD + IL) | 1 × 10−5–8 × 10−5 M | - | 3 weeks (93%) | [227] |
Glucose | MC film (SiO2 nanospheres/SU-8 resin) | - | GOD | Continuous OMC film on silicon wafer + GOD | 5 × 10−4–5 × 10−3 M | - | - | [228] [229] |
Glucose | OMC | AP-TCT | GOD | GCE/OMC film + grafted GOD | 1 × 10−3–1 × 10−2 M | 3.8 × 10−5 M | 1 month (94%) | [230] |
Glucose | MCF (MSU-F/furfuryl alcohol) | - | POx GOD | GCE/(OMC + Nafion + POx) GCE/(OMC + Nafion + GOD) | up to 1 × 10−3 M up to 8 × 10−3 M | - - | 20 days | [231] |
Glucose | HPGC (TEOS-F127- phenol-formalin) | PDA-Au NPs | GOD | HPGC membrane/PDA-Au NPs/GOD | 1 × 10−11–1.2 × 10−9 M | 4.8 × 10−12 M | 1 week (91%) 1 month (76%) | [232] |
Glucose Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | NiFe2 NPs | GOD | GCE/(NiFe2-OMC + Nafion)/(GOD + BSA)/Nafion | 4.86 × 10−5–1.25 × 10−2 M 6.2 × 10−6–4.27 × 10−2 M | 2.7 × 10−6 M 2.4 × 10−7 M | 2 weeks (93%) 4 weeks (95%) | [233] |
Glucose Hydrogen peroxide | CNPs | FcMeOH MB | GOD HRP | GCE/CNP-FcMeOH/GOD GCE/CNP-MB/HRP | up to 6.0 × 10−2 M up to 1.5 × 10−2 M | - | - | [234] |
Glucose L-lactate | CMM | Pt NPs/ PDDA | GOD LOD | GCE/Pt30%/PDDA-OMC/enzyme/Nafion | 5 × 10−7–5 × 10−5 M | 2.5 × 10−6 M 1.7 × 10−6 M | 2 weeks (88%) | [235] |
Glyphosate | CMK-3 (SBA-15/sucrose) | ZnS QDs | HRP | GCE/(OMC + chitosan)/ZnS QDs/HRP | 1 × 10−10–1 × 10−2 M | - | - | [236] |
HgII | OMC | Au NPs | DNA | GCE/PANI/AuNPs/ssDNA | 1 × 10−14–1 × 10−6 M | 6 × 10−16 M | 1 month (85%) | [257] |
Hydrogen Peroxide | OMC (SBA-15/glucose) | PVA | Hb | GCE/(OMC + PVA)/Hb | 4 × 10−7–8.75 × 10−5 M | 5 × 10−7 M | 2 weeks (95%) | [197] |
Hydrogen peroxide | CMK-3 (SBA-15/sucrose) | -COOH | Hb | GCE/{Chitosan/OMC-Hb}n | 1.2 × 10−6–5.7 × 10−5 M | 6 × 10−7 M | 30 days | [22] |
Hydrogen peroxide | GMC-6 (SiO2 pellets/PS) | - | Hb | GCE/(OMC-Hb + Nafion) | 1 × 10−6–1.84 × 10−4 M | 1 × 10−7 M | 16 days (97%) | [198] |
Hydrogen peroxide | GMC-380 | - | Hb | GCE/(OMC-Hb + Nafion) | 1 × 10−6–2.67 × 10−4 M | 1 × 10−7 M | 21 days (90%) | [199] |
Hydrogen peroxide | GMC monolith (SiO2 NPs/resorcinol-Fe/formaldehyde) | - | Hb | GCE/(OMC monolith fragments + DDAB + Hb) | 1 × 10−7–6.0 × 10−5 M | 1 × 10−7 M | 1 week (95%) | [200] |
Hydrogen peroxide | Macroporous carbon | -COOH | Cyt c | OMC-Cyt c monolith | 2.0 × 10−5–2.4 × 10−4 M | 1.46 × 10−5 M | 1 month (86%) | [201] |
Hydrogen peroxide | Macroporous carbon | -COOH | Hb | GCE/OMC-Hb/Nafion | 1.0 × 10−5–8.0 × 10−5 M | - | weeks | [202] |
Hydrogen peroxide | FDU-15 | - | Hb | GCE/OMC film imp. Hb | 2 × 10−6–3 × 10−4 M | 8 × 10−7 M | 30 days (90%) | [203] |
Hydrogen Peroxide | OMCN (F127-resol) | - | Cyt c | ITO/(PDDA/OMC)n/Cyt c | 5 × 10−6–1.5 × 10−3 M | 1 × 10−6 M | 20 days (82%) | [204] |
Hydrogen Peroxide | Carbon aerogel (resorcinol/formaldehyde) | Ni Pd Ppy | Mb | CPE + OMC | 5.0 × 10−6–9.75 × 10−4 M 3.0 × 10−6–8.15 × 10−4 M 2.5 × 10−6–1.06 × 10−3 M | 1.68 × 10−6 M 1.02 × 10−6 M 0.85 × 10−6 M | 2 weeks (>95%) 4 weeks (87%) | [205] |
Hydrogen Peroxide | MCF | - | Mb | GCE/OMC-grafted Mb | 3.5 × 10−6–2.45 × 10−4 M | 1.2 × 10−6 M | 20 days (95%) | [206] |
Hydrogen Peroxide | FDU-15 (F127-resol) | Pt NPs | Hb | GCE/PDDA/OMC-Pt NPs/Hb/Nafion | 2 × 10−6–6 × 10−2 M | 1.0 × 10−6 M | 20 days (96%) | [207] |
Hydrogen peroxide | OMC | - | Hb | MCCE (OMC + Hb) | 1 × 10−6–2.2 × 10−4 M | 4 × 10−7 M | 2 weeks (95%) | [208] |
Hydrogen Peroxide | OMC (SBA-15/furfuryl alcohol) | Fe3O4 | HRP | GCE/(OMC-Fe3O4 + HRP) | 2.4 × 10−7–7.2 × 10−4 M | 1.04 × 10−7 M | 2 weeks (86%) | [237] |
Hydrogen peroxide | 3D-KSC | MOFs | MP-11 | OMC-enzyme composite | 3.9 × 10−7–1.7 × 10−3 M | 1.27 × 10−7 M | 30 days (89%) | [238] |
Hydroquinone Catechol | OMC | Au NPs | TYR | GCE/OMC-Au NPs/l-lysine/TYR | 4 × 10−7–8 × 10−5 M 4 × 10−7–8 × 10−5 M | 5 × 10−8 M 2.5 × 10−8 M | 1 month (85%) | [239] |
Hydroquinone Catechol | OMC | Au NPs | TYR | GCE/(Au NPs + l-lysine)/OMC-Au NPs/TYR | 1 × 10−7–1.1 × 10−4 M | - | - | [240] |
Norepinephrine | OMC (TEOS-F127-resol) | - | PNMT | SPE (OMC + PHBMA) | 1-500 ng∙L−1 | 0.1 ng∙L−1 | - | [241] |
Organophosphorus pesticides | OMC | Fe3O4 | AChE | SPE/(OMC + Fe3O4 + chitosan)/AChE | 1-600 µg∙L−1 | 0.05 µg∙L−1 | - | [242] |
Paraoxon | OMC | - | OPH | GCE/(CB + OMC)/(OPH + Nafion) | 2 × 10−7–8 × 10−6 M | 1.2 × 10−7 M | - | [243] |
Paraoxon Parathion Methyl parathion | CMK-3 (SBA-15/sucrose) | - | OPH | GCE/(OMC + Nafion)/bacteria-OPH | 5 × 10−8–2.5 × 10−5 M 5 × 10−8–2.5 × 10−5 M 8 × 10−8–3 × 10−5 M | 9 × 10−9 M 1 × 10−8 M 1.5 × 10−8 M | 1 month (70%) | [244] |
PbII | OMC | Au NPs | DNAzyme | GCE/l-lysine/OMC-Au NPs/DNAzyme | 5 × 10−10–5 × 10−5 M | 2 × 10−10 M | 1 month (87%) | [258] |
Penicillin binding protein 2 a | GMC | Au NPs | Ab1 antibody | AuE/PAMAM/(OMC-Au NPs)/Protein A/Ab1/BSA | 25–6400 ng∙L−1 | 0.65 ng∙L−1 | 21 days (91%) | [254] |
Phenol | GMC | AA-IL | TYR | GCE/(OMC + AA-IL + TYR + chitosan) | 1 × 10−7–1.0 × 10−5 M | 2.0 × 10−8 M | 21 days (90%) | [245] |
Prostate-specific antigen | GMC | Au NPs | PSA aptamer | PGE/(OMC-Au NPs + chitosan) /BSA/PSA aptamer | 0.25–200 µg∙L−1 | 0.25 µg∙L−1 | 30 days (93%) | [255] |
Prostate-specific antigen | CMK-3 (SBA-15/sucrose) | Pd-SnO2 & Au NPs | Ab1 & Ab2 antigens, HRP | GCE/(Pd-SnO2-Au NPs + Ab1) + OMC/Au NPs-MB-Ab2-HRP | 0.01–100 µg∙L−1 | 3 ng∙L−1 | 15 days (96%) 30 days (89%) | [256] |
Tyramine | CMK-3 (SBA-15/sucrose) | - | TYR | GE/(OMC-TYR + PDDA + TiO2)/Nafion | 6 × 10−6–1.3 × 10−4 M | 1.5 × 10−6 M | 7 days 14 days (70%) | [246] |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walcarius, A. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. Sensors 2017, 17, 1863. https://doi.org/10.3390/s17081863
Walcarius A. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. Sensors. 2017; 17(8):1863. https://doi.org/10.3390/s17081863
Chicago/Turabian StyleWalcarius, Alain. 2017. "Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon" Sensors 17, no. 8: 1863. https://doi.org/10.3390/s17081863
APA StyleWalcarius, A. (2017). Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. Sensors, 17(8), 1863. https://doi.org/10.3390/s17081863