Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water-Crop-Ambient Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. WiFi-Based Data Loggers
2.2. Sensors
2.2.1. Ultrasonic Distance Sensors
2.2.2. Multisensor Capacitance Probes (MCPs)
2.3. Models for Water Depth as a Function of the MCP VWC
3. Results
3.1. MCP Laboratory Characterization
3.1.1. Per-Sensor Model Fitting
3.1.2. Whole Probe Model Fitting
3.1.3. Probe-to-Probe Variability
3.2. Rice Field Verification
Additional MCP Data
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fares, A.; Polyakov, V. Advances in crop water management using capacitive water sensors. Adv. Agron. 2006, 90, 43–77. [Google Scholar]
- Sentek EnviroSCAN Probe. Available online: http://www.sentek.com.au/products/enviro-scan-probe.asp (accessed on 11 October 2017).
- EnviroPro Soil Probes. Available online: http://www.enviroprosoilprobes.com/ (accessed on 11 October 2017).
- Charlesworth, P. Soil Water Monitoring; Land & Water Australia: Canberra, Australia, 2005. [Google Scholar]
- Fares, A.; Alva, A.K. Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile. Irrig. Sci. 2000, 19, 57–64. [Google Scholar] [CrossRef]
- Paltineanu, I.; Starr, J. Real-time soil water dynamics using multisensor capacitance probes: Laboratory calibration. Soil Sci. Soc. Am. J. 1997, 61, 1576–1585. [Google Scholar] [CrossRef]
- Schwank, M.; Green, T.R.; Mätzler, C.; Benedickter, H.; Flühler, H. Laboratory characterization of a commercial capacitance sensor for estimating permittivity and inferring soil water content. Vadose Zone J. 2006, 5, 1048–1064. [Google Scholar] [CrossRef]
- Gunawardena, T.; Fukai, S.; Blamey, F. Low temperature induced spikelet sterility in rice. II. Effects of panicle and root temperatures. Crop Pasture Sci. 2003, 54, 947–956. [Google Scholar] [CrossRef]
- Williams, R.; Angus, J. Deep floodwater protects high-nitrogen rice crops from low-temperature damage. Aust. J. Exp. Agric. 1994, 34, 927–932. [Google Scholar] [CrossRef]
- Heenan, D.; Thompson, J. Growth, grain yield and water use of rice grown under restricted water supply in New South Wales. Aust. J. Exp. Agric. 1984, 24, 104–109. [Google Scholar] [CrossRef]
- Rice Growing Guide 2016–17. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/178171/rice-growing-guide-2016-17.pdf (accessed on 9 December 2017).
- Humphreys, E.; Meisner, C.; Gupta, R.; Timsina, J.; Beecher, H.; Lu, T.Y.; Gill, M.; Masih, I.; Guo, Z.J.; Thompson, J. Water saving in rice-wheat systems. Plant Prod. Sci. 2005, 8, 242–258. [Google Scholar] [CrossRef]
- Dunn, B.; Dunn, T.; Beecher, H. Nitrogen timing and rate effects on growth and grain yield of delayed permanent-water rice in South-Eastern Australia. Crop Pasture Sci. 2014, 65, 878–887. [Google Scholar] [CrossRef]
- Kato, Y.; Okami, M.; Katsura, K. Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crops Res. 2009, 113, 328–334. [Google Scholar] [CrossRef]
- Tward, E.; Junkins, P.D. Multi-Capacitor Fluid Level Sensor. U.S. Patent No. 4,417,473, 3 February 1982. [Google Scholar]
- Xiao, D.; Feng, J.; Wang, N.; Luo, X.; Hu, Y. Integrated soil moisture and water depth sensor for paddy fields. Comput. Electron. Agric. 2013, 98, 214–221. [Google Scholar] [CrossRef]
- Kawakami, Y.; Furuta, T.; Nakagawa, H.; Kitamura, T.; Kurosawa, K.; Kogami, K.; Tajino, N.; Tanaka, M.S. Rice Cultivation Support System Equipped with Water-level Sensor System. IFAC-PapersOnLine 2016, 49, 143–148. [Google Scholar] [CrossRef]
- Brinkhoff, J.; Hornbuckle, J. WiField, an IEEE 802.11-based Agricultural Sensor Data Gathering and Logging Platform. In Proceedings of the 11th International Conference on Sensing Technology, Sydney, Australia, 4–6 December 2017. [Google Scholar]
- Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. Available online: https://www.scipy.org/ (accessed on 9 December 2017).
- Food and Agriculture Organisation of the United Nations (FAO). World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (Update 2015); World Soil Resources Reports 106; FAO: Quebec, QC, Canada, 2015. [Google Scholar]
- Hornbuckle, J.W.; Christen, E. Physical Properties of Soils in the Murrumbidgee and Coleambally Irrigation Areas; CSIRO Land and Water: Canberra, Australia, 1999. [Google Scholar]
- Gasch, C.K.; Brown, D.J.; Brooks, E.S.; Yourek, M.; Poggio, M.; Cobos, D.R.; Campbell, C.S. A pragmatic, automated approach for retroactive calibration of soil moisture sensors using a two-step, soil-specific correction. Comput. Electron. Agric. 2017, 137, 29–40. [Google Scholar] [CrossRef]
- Larson, P.; Runyan, C. Evaluation of a Capacitance Water Level Recorder and Calibration Methods in an Urban Environment. 2009. Available online: http://www.umbc.edu/cuere/BaltimoreWTB/pdf/TM_2009_003.pdf (accessed on 16 December 2017).
Parameter | Tangent | Polynomial | ||
---|---|---|---|---|
Local | Global | Local | Global | |
36.0 | 23.9 | 2.36 | 2.61 | |
16.8 × 10 | 22.7 × 10 | 63.5 × 10 | −96.0 × 10 | |
−1.05 | −1.12 | 1.44 × 10 | 2.46 × 10 | |
−17.1 × 10 | −29.7 × 10 | |||
76.0 × 10 | 131 × 10 |
Parameter | Sensor Type | Cost | Accuracy | Robustness | Typical Interface |
---|---|---|---|---|---|
Water depth | Pressure | $$$ | +++ | +++ | 40–20 mA |
Ultrasonic | $$ | + | + | UART | |
Capacitance | $$ | + | ++ | Voltage | |
Soil moisture | Gypsum block | $ | ++ | ++ | AC resistance |
Capacitive | $$ | + | ++ | Voltage | |
Temperature | DS18B20 | $ | + | ++ | OneWire |
All parameters | MCP | $$$ | ++ | +++ | SDI-12 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinkhoff, J.; Hornbuckle, J.; Dowling, T. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water-Crop-Ambient Conditions. Sensors 2018, 18, 53. https://doi.org/10.3390/s18010053
Brinkhoff J, Hornbuckle J, Dowling T. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water-Crop-Ambient Conditions. Sensors. 2018; 18(1):53. https://doi.org/10.3390/s18010053
Chicago/Turabian StyleBrinkhoff, James, John Hornbuckle, and Thomas Dowling. 2018. "Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water-Crop-Ambient Conditions" Sensors 18, no. 1: 53. https://doi.org/10.3390/s18010053
APA StyleBrinkhoff, J., Hornbuckle, J., & Dowling, T. (2018). Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water-Crop-Ambient Conditions. Sensors, 18(1), 53. https://doi.org/10.3390/s18010053