Support Vector Machine Optimized by Genetic Algorithm for Data Analysis of Near-Infrared Spectroscopy Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tobacco Database
2.2. De-Noising for the Raw Spectra of the Samples
2.3. Outlier Identification and Feature Extraction
2.4. Genetic Algorithm Optimized Support Vector Machine Approach
2.5. Support Vector Machine Algorithm
2.6. Model Evaluation
3. Results and Discussion
3.1. Selection of Parameters
3.2. Feature Extraction with GA
3.2.1. Population Size
3.2.2. Genetic Operators
3.2.3. Selection the Number of PCs with GA
3.3. The Evaluation of the Proposed Model
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ma, T.; Wang, F.; Cheng, J.J.; Yu, Y.; Chen, X.Y. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks. Sensors 2016, 16, 1701. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Kang, M.G. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition. Sensors 2016, 16, 719. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Lee, I.H. Coverage Probability and Area Spectral Efficiency of Clustered Linear Unmanned Vehicle Sensor Networks. Sensors 2017, 17, 2550. [Google Scholar] [CrossRef] [PubMed]
- Shariff, K.K.M.; Hoare, E.; Daniel, L.; Antoniou, M.; Cherniakov, M. Comparison of Adaptive Spectral Estimation for Vehicle Speed Measurement with Radar Sensors. Sensors 2017, 17, 751. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.P.; Cai, L.S.; Wang, F.; He, X.W. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals. Sensors 2017, 17, 506. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.P.; He, Y.; Dong, T.; Nie, P.C. Spectral Analysis and Sensitive Waveband Determination Based on Nitrogen Detection of Different Soil Types Using Near Infrared Sensors. Sensors 2018, 18, 523. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.F.; Ren, D.; Wang, J.H.; Zhang, Z.; Lu, N.; Meng, L. An Ensemble Successive Project Algorithm for Liquor Detection Using Near Infrared Sensor. Sensors 2016, 16, 89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, X.; Wen, Y.D.; Yu, C.X.; Wang, L.P.; Zhao, L.L.; Li, J.H. Tobacco Quality Analysis of Industrial Classification of Different Producing Area Using Near-Infrared (NIR) Spectrum. Spectrosc. Spect. Anal. 2012, 32, 2694–2697. [Google Scholar]
- Zhang, Y.; Cong, Q.; Xie, Y.; Yang, J.; Zhao, B. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.J.; Zhang, L.G.; Xie, J.; Luo, J.Q. Pattern recognition of Chinese flue-cured tobaccos by an improved and simplified K-nearest neighbors classification algorithm on near infrared spectra. Anal. Chim. Acta 2009, 633, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Liu, W.J.; Hou, Y.; Qiu, C.G.; Yang, S.Y.; Li, C.Y.; Nie, L.R. Sparse Representation Classification of Tobacco Leaves Using Near-Infrared Spectroscopy and a Deep Learning Algorithm. Anal. Lett. 2018, 51, 1029–1038. [Google Scholar] [CrossRef]
- Zhang, H.B.; Liu, T.A.; Shu, R.X.; Yang, K.; Ye, S.; You, J.L.; Ge, J. Using EN-NIR with Support Vector Machine for Classification of Producing Year of Tobacco. Spectrosc. Spect. Anal. 2018, 38, 1620–1625. [Google Scholar]
- Zhu, C.; Gong, H.L.; Li, Z.R.; Yu, C.X. Application of High Dimensional Feature Grouping Method in Near-infrared Spectra of Identification of Tobacco Growing Areas. In Proceedings of the 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China, 8–10 July 2016; pp. 230–234. [Google Scholar]
- Zhang, Y.; He, L.Y.; Ye, Y.Z. Identification of Producing Area of Tobacco Leaf Based on Spectrometric Analysis and Ls-Svm. In Proceedings of the 3rd International Conference on Computer Technology and Development (ICCTD 2011), Chengdu, China, 25–27 November 2011; Volume 2, pp. 617–622. [Google Scholar]
- Hana, M.; McClure, W.F.; Whitaker, T.B.; White, M.W.; Bahler, D.R. Applying Artificial Neural Networks: Part II. Using near Infrared Data to Classify Tobacco Types and Identify Native Grown Tobacco. J. Near Infrared Spectrosc. 1997, 5, 19–25. [Google Scholar] [CrossRef]
- Li, Q.; Gu, Y.; Jia, J. Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier. Sensors 2017, 17, 272. [Google Scholar] [CrossRef] [PubMed]
- Saberioon, M.; Cisar, P.; Labbe, L.; Soucek, P.; Pelissier, P.; Kerneis, T. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features. Sensors 2018, 18, 1027. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Pupo, R.; Sierra-Romero, A.; Torres-Roman, D.; Shkvarko, Y.V.; Santiago-Paz, J.; Gomez-Gutierrez, D.; Robles-Valdez, D.; Hermosillo-Reynoso, F.; Romero-Delgado, M. Vehicle Detection with Occlusion Handling, Tracking, and OC-SVM Classification: A High Performance Vision-Based System. Sensors 2018, 18, 374. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.X.; Ren, Z.Q.; Tang, W.L.; Wang, H.Q.; Chen, P. Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR. Sensors 2010, 10, 4602–4621. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.R.; Zhao, H.L.; Yang, Z.T.; Mo, Y. A Modular Spectrum Sensing System Based on PSO-SVM. Sensors 2012, 12, 15292–15307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Gonzalez, R.; Gomez-Gil, J.; Gomez-Gil, F.J.; Martinez-Martinez, V. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis. Sensors 2014, 14, 20713–20735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, P.; Villa, L.F.; Renones, A.; Bustillo, A.; Maudes, J. An SVM-Based Solution for Fault Detection in Wind Turbines. Sensors 2015, 15, 5627–5648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Men, H.; Fu, S.L.; Yang, J.L.; Cheng, M.Q.; Shi, Y.; Liu, J.J. Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples. Sensors 2018, 18, 285. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Jiang, H.J.; Feng, S.L.; Liu, J.Z.; Chen, P.; Zhu, B.J.; Wang, Z.H. Bowel sound recognition using SVM classification in a wearable health monitoring system. Sci. China Inf. Sci. 2018, 61, 084301. [Google Scholar] [CrossRef]
- Xiao, D.Q.; Feng, J.Z.; Lin, T.Y.; Pang, C.H.; Ye, Y.W. Classification and recognition scheme for vegetable pests based on the BOF-SVM model. Int. J. Agric. Biol. Eng. 2018, 11, 190–196. [Google Scholar] [CrossRef]
- Wang, W.F.; Yang, C.Y.; Wu, Y.F. SVM-based classification method to identify alcohol consumption using ECG and PPG monitoring. Pers. Ubiquitous Comput. 2018, 22, 275–287. [Google Scholar] [CrossRef]
- Gu, L.; Xue, L.C.; Song, Q.; Wang, F.J.; He, H.Q.; Zhang, Z.Y. Classification of the fragrant styles and evaluation of the aromatic quality of flue-cured tobacco leaves by machine-learning methods. J. Bioinf. Comput. Biol. 2016, 14, 1650033. [Google Scholar] [CrossRef] [PubMed]
- Bin, J.; Ai, F.F.; Fan, W.; Zhou, J.H.; Yun, Y.H.; Liang, Y.Z. A modified random forest approach to improve multi-class classification performance of tobacco leaf grades coupled with NIR spectroscopy. RSC Adv. 2016, 6, 30353–30361. [Google Scholar] [CrossRef]
- Xie, L.; Pan, W.J.; Yang, S.X. A Support Vector Machine Discriminator for Tobacco Growing Areas Based on Near-Infrared Spectrum. In Proceedings of the IEEE International Conference on Automation and Logistics (ICAL), Zhengzhou, China, 15–17 August 2012; pp. 24–29. [Google Scholar]
- Xie, L. Intelligent Discrimination of Growing Areas Based on Near-Infrared Spectra. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2012. [Google Scholar]
- Montano-Moreno, J.J.; Gervilla-Garcia, E.; Cajal-Blasco, B.; Palmer, A. Data mining classification techniques: An application to tobacco consumption in teenagers. An. Psicol. 2014, 30, 633–641. [Google Scholar]
- Besalu, E.; Castellanos, M.; Sanchez, J.M. Sequential discriminant classification of environments with different levels of exposure to tobacco smoke. Sci. Total Environ. 2014, 490, 899–904. [Google Scholar] [CrossRef] [PubMed]
Class 1 (North) | Class 2 (Middle) | Class 3 (Northwest) | Class 4 (Southwest) | Total |
---|---|---|---|---|
38 | 144 | 70 | 80 | 332 |
Predicted Label | |||
---|---|---|---|
Positive | Negative | ||
Given Label | Positive | ||
Negative |
n | C | σ | Pcva (%) | t (s) |
---|---|---|---|---|
6 | 2.0 | 2.0 | 59 | 20 |
8 | 1.4 | 2.0 | 66.2 | 21 |
10 | 2.0 | 1.4 | 72.2 | 23 |
12 | 2.0 | 1.4 | 75.6 | 24 |
14 | 2.0 | 2.0 | 78.6 | 24 |
16 | 2.0 | 0.7 | 75.6 | 28 |
Input Number | ||||||
---|---|---|---|---|---|---|
Ni | 6 | 8 | 10 | 12 | 14 | 16 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 0 | 0 | 0 | 0 | 1 | 1 |
3 | 0 | 1 | 1 | 1 | 1 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 1 | 0 | 1 | 1 |
6 | 1 | 1 | 1 | 1 | 1 | 1 |
7 | 1 | 1 | 1 | 1 | 1 | 1 |
8 | 1 | 1 | 1 | 1 | 1 | 1 |
9 | 0 | 0 | 1 | 1 | 1 | 0 |
10 | 1 | 1 | 1 | 1 | 1 | 1 |
11 | 1 | 1 | 1 | 1 | 1 | 1 |
12 | 0 | 0 | 1 | 1 | 1 | 1 |
13 | 0 | 0 | 0 | 0 | 1 | 1 |
14 | 0 | 0 | 0 | 0 | 0 | 1 |
15 | 0 | 0 | 0 | 1 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | 0 | 0 | 0 | 0 | 0 | 1 |
21 | 0 | 1 | 0 | 1 | 1 | 1 |
22 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 0 | 0 | 1 | 0 | 0 |
24 | 0 | 0 | 0 | 0 | 0 | 1 |
25 | 0 | 0 | 0 | 0 | 0 | 0 |
GA-SVM | SVM | |||
---|---|---|---|---|
Input Number | Pa (%) | Im (%) | Pa (%) | Im (%) |
6 | 72.7 | 72.4 | 60.6 | 99.6 |
8 | 75.8 | 74.1 | 67.0 | 99.8 |
10 | 75.8 | 74.7 | 68.2 | 99.8 |
12 | 74.2 | 74.2 | 77.3 | 99.8 |
14 | 83.3 | 98.8 | 80.3 | 99.9 |
16 | 78.8 | 99.8 | 78.8 | 99.9 |
Class 1: North | Class 2: Middle | |||||||
γ | γ | |||||||
GA-SVM | 0.92 | 1 | 1 | 0.96 | 0.84 | 0.83 | 0.75 | 0.79 |
SVM | 0.67 | 0.98 | 1 | 0.76 | 0.88 | 0.78 | 0.75 | 0.79 |
Class 3: Northwest | Class 4: Southwest | |||||||
γ | γ | |||||||
GA-SVM | 0.67 | 0.93 | 0.67 | 0.67 | 0.88 | 1 | 1 | 0.94 |
SVM | 0.75 | 0.94 | 0.71 | 0.75 | 0.82 | 1 | 0.89 | 0.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Xie, L.; Yang, S.X.; Tian, F. Support Vector Machine Optimized by Genetic Algorithm for Data Analysis of Near-Infrared Spectroscopy Sensors. Sensors 2018, 18, 3222. https://doi.org/10.3390/s18103222
Wang D, Xie L, Yang SX, Tian F. Support Vector Machine Optimized by Genetic Algorithm for Data Analysis of Near-Infrared Spectroscopy Sensors. Sensors. 2018; 18(10):3222. https://doi.org/10.3390/s18103222
Chicago/Turabian StyleWang, Di, Lin Xie, Simon X. Yang, and Fengchun Tian. 2018. "Support Vector Machine Optimized by Genetic Algorithm for Data Analysis of Near-Infrared Spectroscopy Sensors" Sensors 18, no. 10: 3222. https://doi.org/10.3390/s18103222
APA StyleWang, D., Xie, L., Yang, S. X., & Tian, F. (2018). Support Vector Machine Optimized by Genetic Algorithm for Data Analysis of Near-Infrared Spectroscopy Sensors. Sensors, 18(10), 3222. https://doi.org/10.3390/s18103222