Development of a Dual MOS Electronic Nose/Camera System for Improving Fruit Ripeness Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Maturity Stage Determination
2.2. TD-GC-MS System
2.3. E-Nose System
2.3.1. Sample and Sensing Chambers
2.3.2. Sensor Array
2.3.3. Data Acquisition and Feature Extraction
2.4. Camera System
3. Results and Discussion
3.1. Sensor Response and Color Measurement
3.2. Classification with E-Nose System
3.3. Classification with Camera System
3.4. Classification with the Camera/E-Nose System
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gardner, J.W.; Bartlet, P.N. A brief history of electronic noses. Sens. Actuators B 1994, 18, 210–211. [Google Scholar] [CrossRef]
- Rahman, M.M.; Charoenlarpnopparut, C.; Suksompong, P.; Toochinda, P.; Taparugssanagorn, A. A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose. Sensors 2017, 17, 2089. [Google Scholar] [CrossRef] [PubMed]
- Baietto, M.; Wilson, A.D. Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors 2015, 15, 899–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, S.; Ling, P.; Zhu, H.; Keener, H.M. Plant Pest Detection Using an Artificial Nose System: A Review. Sensors 2018, 18, 378. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Portable Electronic Nose Based on Electrochemical Sensors for Food Quality Assessment. Sensors 2017, 17, 2715. [Google Scholar] [CrossRef] [PubMed]
- Phaisangittisagul, E.; Nagle, H.T.; Areekul, V. Intelligent method for sensor subset selection for machine olfaction. Sens. Actuator B Chem. 2010, 145, 507–515. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Buratti, S.; Ballabio, D.; Benedetti, S.; Cosio, M.S. Prediction of Italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of genetic algorithm regression models. Food Chem. 2007, 100, 211–218. [Google Scholar] [CrossRef]
- Rudnitskaya, A.; Legin, A. Sensor systems, electronic tongues and electronic noses, for the monitoring of biotechnological processes. J. Ind. Microbiol. Biotechnol. 2008, 35, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Che Harun, F.K.; Taylor, J.E.; Covington, J.A.; Gardner, J.W. An electronic nose employing dual-channel odour separation columns with large chemosensor array for advanced odour discrimination. Sens. Actuators B 2009, 141, 134–140. [Google Scholar] [CrossRef]
- Li, C.; Krewer, G.W.; Ji, P.; Scherm, H.; Kays, S.J. Gas sensor array for blueberry fruit disease detection and classification. Postharvest Biol. Technol. 2010, 55, 144–149. [Google Scholar] [CrossRef]
- Llobet, E.; Hines, E.L.; Gardner, J.W.; Franco, S. Non-destructive banana ripeness determination using a neural network-based electronic nose. Meas. Sci. Technol. 1999, 10, 538–548. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Mohtasebi, S.S.; Varnamkhasti, M.G.; Ahmadi, H.; Lozano, J. Development and application of a new low cost electronic nose for the ripeness monitoring of banana using computational techniques (PCA, LDA, SIMCA, and SVM). Czech J. Food Sci. 2014, 32, 538–548. [Google Scholar] [CrossRef]
- Brezmes, J.; Fructuoso, L.; Llobet, E.; Vilanova, X.; Recasens, I.; Orts, J.; Saiz, G.; Correig, X. Evaluation of an electronic nose to assess fruit ripeness. IEEE Sens. J. 2005, 5, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.T.; Chiu, S.W.; Pan, C.H.; Hsieh, H.Y.; Liang, Y.S.; Liu, S.C. Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 2010, 10, 9179–9193. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, F.; Aguilera, J.M. Application of Image Analysis for Classification of Ripening Bananas. J. Food Sci. 2004, 69, 415–423. [Google Scholar] [CrossRef]
- Gokul, P.; Raj, S.; Suriyamoorthi, P. Estimation of Volume and Maturity of Sweet Lime Fruit using Image Processing Algorithm. In Proceedings of the 2015 International Conference on Communications and Signal Processing, IEEE ICCSP, Melmaruvathur, India, 2–4 April 2015; pp. 1227–1229. [Google Scholar]
- Asnor, J.I.; Rosnah, S.; Wan, Z.W.H.; Badrul, H.A.B. Pineapple maturity recognition using RGB extraction. World Acad. Sci. Eng. Technol. 2013, 78, 147–150. [Google Scholar]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment—A review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Dadzie, B.K.; Orchard, J.E. Routine Post-Harvest Screening of Banana/Plantain Hybrids: Criteria and Methods; INIBAP Technical Guidelines 2; International Plant Genetic Resources Institute: Rome, Italy, 1997; pp. 5–30. [Google Scholar]
- Le, M.; Slaughter, D.C.; Thompson, J.E. Optical chlorophyll sensing system for banana ripening. Postharvest Biol. Technol. 1997, 12, 273–283. [Google Scholar]
- Sneddon, J.; Masuram, S.; Richert, J. Gas chromatography-mass spectrometry, basic principles, instrumentation and selected applications for the detection of organic compounds. Anal. Lett. 2007, 40, 1003–1012. [Google Scholar] [CrossRef]
- Romain, A.C.; Nicolas, J. Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview. Sens. Actuators B 2010, 146, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Eusebio, L.; Capelli, L.; Sironi, S. Electronic nose testing procedure for the definition of minimum performance requirements for environmental odor monitoring. Sensors 2016, 16, 1548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.; Liu, Y.; Xu, X.; Zhou, G. Species discrimination among three kinds of puffer fish using an electronic nose combined with olfactory sensory evaluation. Sensors 2012, 12, 12562–12571. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, M.C.; Severin, E.J.; Doleman, B.J.; Beaber, S.A.; Grubbs, R.H.; Lewis, N.S. Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black−Polymer Resistors. Chem. Mater. 1996, 8, 2298–2312. [Google Scholar] [CrossRef] [Green Version]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review. J. Appl. Res. Med. Aromat. Plants 2016, 3, 1–9. [Google Scholar] [CrossRef]
- Arnold, C.; Haeringer, D.; Kiselev, I.; Goschnick, J. Sub-surface probe module equipped with the Karlsruhe Micronose KAMINA using a hierarchical LDA for the recognition of volatile soil pollutants. Sens. Actuators B 2006, 116, 90–94. [Google Scholar] [CrossRef]
- Wang, X.; Syrmos, V.L. Optimal Cluster Selection Based on Fisher Class Separability Measure. In Proceedings of the American Control Conference, Portland, OR, USA, 8–10 June 2005; Volume 3, pp. 1929–1934. [Google Scholar]
- Fonollosa, J.; Fernández, L.; Gutiérrez-Gálvez, A.; Huerta, R.; Marco, S. Calibration transfer and drift counteraction in chemical sensor arrays using direct standardization. Sens. Actuators B 2016, 236, 1044–1053. [Google Scholar] [CrossRef]
- Shao, X.; Li, H.; Wang, N.; Zhang, Q. Comparison of different classification methods for analyzing electronic nose data to characterize sesame oils and blends. Sensors 2015, 15, 26726–26742. [Google Scholar] [CrossRef] [PubMed]
- Gorska-Horczyczak, E.; Guzek, D.; Moleda, Z.; Wojtasik-Kalinowska, I.; Brodowska, M.; Wierzbicka, A. Applications of electronic noses in meat analysis. Food Sci. Technol. 2016, 36, 389–395. [Google Scholar] [CrossRef] [Green Version]
Index. | Color | Stage |
---|---|---|
1 | All green | Unripe |
2 | Green with a trace of yellow | Half-ripe |
3 | More green than yellow | |
4 | More yellow than green | |
5 | Yellow with green necks | |
6 | All yellow | Fully ripe |
7 | All yellow with brown | Overripe |
Volatile Organic Compounds. | Unripe | Half-Ripe | Fully Ripe | Overripe |
---|---|---|---|---|
Alkanes | ||||
Isobutane | * | * | * | * |
Butane | * | * | * | * |
Pentane | * | * | * | * |
Cyclopentane | * | * | ||
2-Pentanone | * | * | * | |
1,3-Butadiene, 2-methyl- | * | * | ||
Cyclobutane, methyl- | * | |||
Bicyclo[4.2.0]octa-1,3,5-triene | * | |||
Alcohols | ||||
Ethyl alcohol | * | * | * | |
1-Propanol, 2-methyl- | * | * | * | |
1-Butanol | * | * | ||
1-Butanol, 3-methyl- | * | * | * | |
2-Pentanol | * | * | ||
Esters | ||||
Formic acid, ethyl ester | * | |||
Ethyl Acetate | * | * | * | |
n-Propyl acetate | * | * | * | |
Acetic acid, 2-methylpropyl ester | * | * | * | |
Butanoic acid, ethyl ester | * | * | * | |
Acetic acid, butyl ester | * | * | ||
2-Pentanol, acetate | * | * | * | |
1-Butanol, 3-methyl-, acetate | * | * | * | |
Butanoic acid, butyl ester | * | * | ||
Butanoic acid, 1-methylbutyl ester | ||||
Butanoic acid, 2-methylpropyl ester | * | * | * | |
Butanoic acid, 3-methyl-, 2-methylpropyl ester | * | * | * | |
Butanoic acid, 3-methyl-, butyl ester | * | * | ||
Butanoic acid, 3-methyl-, 3-methylbutyl ester | * | * | * |
Sensor Number. | Sensor Type | Target Gas (According to FIGARO® Datasheet) |
---|---|---|
1 | TGS2600 | Hydrogen, Carbon monoxide |
2 | TGS2602 | Ammonia, Hydrogen sulfide |
3 | TGS2603 | Trimethylamine, Methyl mercaptan |
4 | TGS2610 | Butane, LP gas |
5 | TGS2611 | Methane, Natural Gas |
6 | TGS2612 | Methane, Propane, Iso-butane |
7 | TGS2620 | Alcohol, Solvent vapors |
Fisher Class Separability Measure. | |
---|---|
Feature Type | Score |
Camera | 8.08 |
E-nose | 6.93 |
E-nose/Camera | 10.52 |
System. | Number of Feature | PCA + KNN(K = 3) | PCA + SVM | LDA + KNN(K=3) | LDA + SVM |
---|---|---|---|---|---|
Camera | 3 | 99.05% | 97.14% | 99.05% | 94.29% |
E-nose | 7 | 98.10% | 95.24% | 90.48% | 86.67% |
E-nose/Camera | 10 | 100% | 100% | 100% | 100% |
Incorrect Classification | Correct Classification | ||||||||
---|---|---|---|---|---|---|---|---|---|
System | Algorithm | Number of Test Samples Incorrectly Classified/Total Number of Test Samples | Number of Test Samples Correctly Classified/Total Number of Test Samples | ||||||
Unripe | Half-Ripe | Fully Ripe | Over-Ripe | Unripe | Half-Ripe | Fully Ripe | Over-Ripe | ||
Camera | PCA + KNN(K = 3) | 1/15 | 0/30 | 0/45 | 0/15 | 14/15 | 30/30 | 45/45 | 15/15 |
PCA + SVM | 3/15 | 0/30 | 0/45 | 0/15 | 13/15 | 30/30 | 45/45 | 15/15 | |
LDA + KNN(K = 3) | 1/15 | 0/30 | 0/45 | 0/15 | 14/15 | 30/30 | 45/45 | 15/15 | |
LDA + SVM | 3/15 | 3/30 | 0/45 | 0/15 | 12/15 | 27/30 | 45/45 | 15/15 | |
E-nose | PCA + KNN(K = 3) | 0/15 | 0/30 | 2/45 | 0/15 | 15/15 | 30/30 | 43/45 | 15/15 |
PCA + SVM | 0/15 | 1/30 | 2/45 | 2/15 | 15/15 | 29/30 | 43/45 | 13/15 | |
LDA + KNN(K = 3) | 0/15 | 0/30 | 6/45 | 4/15 | 15/15 | 30/30 | 39/45 | 11/15 | |
LDA + SVM | 0/15 | 0/30 | 3/45 | 11/15 | 15/15 | 30/30 | 42/45 | 4/15 | |
E-nose/Camera | PCA + KNN(K = 3) | 0/15 | 0/30 | 0/45 | 0/15 | 15/15 | 30/30 | 45/45 | 15/15 |
PCA + SVM | 0/15 | 0/30 | 0/45 | 0/15 | 15/15 | 30/30 | 45/45 | 15/15 | |
LDA + KNN(K = 3) | 0/15 | 0/30 | 0/45 | 0/15 | 15/15 | 30/30 | 45/45 | 15/15 | |
LDA + SVM | 0/15 | 0/30 | 0/45 | 0/15 | 15/15 | 30/30 | 45/45 | 15/15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-Y.; Wu, C.-C.; Chou, T.-I.; Chiu, S.-W.; Tang, K.-T. Development of a Dual MOS Electronic Nose/Camera System for Improving Fruit Ripeness Classification. Sensors 2018, 18, 3256. https://doi.org/10.3390/s18103256
Chen L-Y, Wu C-C, Chou T-I, Chiu S-W, Tang K-T. Development of a Dual MOS Electronic Nose/Camera System for Improving Fruit Ripeness Classification. Sensors. 2018; 18(10):3256. https://doi.org/10.3390/s18103256
Chicago/Turabian StyleChen, Li-Ying, Cheng-Chun Wu, Ting-I. Chou, Shih-Wen Chiu, and Kea-Tiong Tang. 2018. "Development of a Dual MOS Electronic Nose/Camera System for Improving Fruit Ripeness Classification" Sensors 18, no. 10: 3256. https://doi.org/10.3390/s18103256
APA StyleChen, L. -Y., Wu, C. -C., Chou, T. -I., Chiu, S. -W., & Tang, K. -T. (2018). Development of a Dual MOS Electronic Nose/Camera System for Improving Fruit Ripeness Classification. Sensors, 18(10), 3256. https://doi.org/10.3390/s18103256