Acetone Sensing Properties and Mechanism of SnO2 Thick-Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leite, E.R.; Weber, I.T.; Longo, E.; Varela, J.A. A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. 2000, 12, 965–968. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Z.; Chen, Z.; Yang, S.; Fu, X.; Huang, R.; Li, X.; Xiong, J.; Hu, Y.; Gu, H. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment. Sensors 2018, 18, 949. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Ma, S.Y.; Li, S.Y.; Luo, J.; Li, W.Q.; Li, F.M.; Mao, Y.Z.; Wang, T.T.; Li, Y.F. Highly sensitive acetone sensors based on Y-doped SnO2 prismatic hollow nanofibers synthesized by electrospinning. Sens. Actuators B Chem. 2014, 200, 181–190. [Google Scholar] [CrossRef]
- Suematsu, K.; Ma, N.; Watanabe, K.; Yuasa, M.; Kida, T.; Shimanoe, K. Effect of Humid Aging on the Oxygen Adsorption in SnO2 Gas Sensors. Sensors 2018, 18, 254. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Li, Y.; Tong, X.; Zou, Y.; Liu, X.; An, D.; Wang, Q. Synthesis of Ce-doped SnO2 nanoparticles and their acetone gas sensing properties. Appl. Surf. Sci. 2017, 407, 447–455. [Google Scholar] [CrossRef]
- Song, P.; Wang, Q.; Yang, Z. Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres. Sens. Actuators B Chem. 2012, 173, 839–846. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, X.; Meng, F.; Liu, J. Study of influencing factors of dynamic measurements based on SnO2 gas sensor. Sensors 2004, 4, 95–104. [Google Scholar] [CrossRef]
- Heo, Y.W.; Varadarajan, V.; Kaufman, M.; Kim, K.; Norton, D.P.; Ren, F.; Fleming, P.H. Site-specific growth of ZnO nanorods using catalysis driven molecular-beam epitaxy. Appl. Phys. Lett. 2002, 81, 3046–3048. [Google Scholar] [CrossRef]
- Bagal, L.K.; Patil, J.Y.; Bagal, K.N.; Mulla, I.S.; Suryavanshi, S.S. Acetone vapour sensing characteristics of undoped and Zn, Ce doped SnO2 thick film gas sensor. Mater. Res. Innov. 2013, 17, 98–105. [Google Scholar] [CrossRef]
- Zhao, N.; Chen, Z.; Zeng, W. Enhanced H2S sensor based on electrospun mesoporous SnO2 nanotubes. J. Mater. Sci. Mater. Electron. 2015, 26, 9152–9157. [Google Scholar] [CrossRef]
- Ge, Q.; Ma, S.Y.; Xu, Y.B.; Xu, X.L.; Chen, H.; Qiang, Z.; Yang, H.M.; Ma, L.; Zeng, Q.Z. Preparation, characterization and gas sensing properties of Pr-doped ZnO/SnO2 nanoflowers. Mater. Lett. 2017, 191, 5–9. [Google Scholar] [CrossRef]
- Srivastava, V.; Jain, K. At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor. Mater. Lett. 2016, 169, 28–32. [Google Scholar] [CrossRef]
- Zeng, W.; Li, T.; Li, T.; Hao, J.; Li, Y. Template-free synthesis of highly ethanol-response hollow SnO2 spheres using hydrothermal process. J. Mater. Sci. Mater. Electron. 2015, 26, 1192–1197. [Google Scholar] [CrossRef]
- Godish, T. Indoor Air Pollution Control; Lewis Publishers: Pearl River, NY, USA, 1991. [Google Scholar]
- Shen, J.; Zhang, L.; Ren, J.; Wang, J.; Yao, H.; Li, Z. Highly enhanced acetone sensing performance of porous C-doped WO3 hollow spheres by carbon spheres as templates. Sens. Actuators B Chem. 2017, 239, 597–607. [Google Scholar] [CrossRef]
- Deng, L.; Zhao, X.; Ma, Y.; Chen, S.; Xu, G. Low cost acetone sensors with selectivity over water vapor based on screen printed TiO2 nanoparticles. Anal. Methods 2013, 5, 3709–3713. [Google Scholar] [CrossRef]
- Navale, S.T.; Yang, Z.B.; Liu, C.; Cao, P.J.; Patil, V.B.; Ramgir, N.S.; Mane, R.S.; Stadler, F.J. Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit. Sens. Actuators B Chem. 2018, 255, 1701–1710. [Google Scholar] [CrossRef]
- Makisimovich, N.; Vorottyntsev, V.; Nikitina, N.; Kaskevich, O.; Karabum, P.; Martynenko, F. Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis. Sens. Actuators B Chem. 1996, 36, 419. [Google Scholar] [CrossRef]
- Zhao, J.; Huo, L.H.; Gao, S.; Zhao, H.; Zhao, J.G. Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating. Sens. Actuators B Chem. 2006, 115, 460–464. [Google Scholar] [CrossRef]
- Patil, S.B.; Patil, P.P.; More, M.A. Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films. Sens. Actuators B Chem. 2007, 125, 126–130. [Google Scholar] [CrossRef]
- Singkammo, S.; Wisitsoraat, A.; Sriprachuabwong, C.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl. Mater. Inter. 2015, 7, 3077–3092. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhang, D.; Gu, J.; Xu, J.; Dong, J.; Li, J. Biotemplate fabrication of SnO2 nanotubular materials by a sonochemical method for gas sensors. J. Nanopart. Res. 2010, 12, 1389. [Google Scholar] [CrossRef]
- Qin, L.; Xu, J.; Dong, X.; Pan, Q.; Cheng, Z.; Xiang, Q.; Li, F. The template-free synthesis of square-shaped SnO2 nanowires: The temperature effect and acetone gas sensors. Nanotechnology 2008, 19, 185705. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lin, H.; Qu, F. Synthesis of mesoporous SnO2 nanomaterials with selective gas-sensing properties. J. Sol Gel Sci. Technol. 2013, 67, 545. [Google Scholar] [CrossRef]
- Yu, H.; Wang, S.; Xiao, C.; Xiao, B.; Wang, P.; Li, Z.; Zhang, M. Enhanced acetone gas sensing properties by aurelia-like SnO2 micronanostructures. Cryst. Eng. Comm. 2015, 17, 4316. [Google Scholar] [CrossRef]
- Sun, P.; Cai, Y.; Du, S.; Xu, X.; You, L.; Ma, J.; Liu, F.; Liang, X.; Sun, Y.; Lu, G. Hierarchical α-Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties. Sens. Actuators B Chem. 2013, 182, 336. [Google Scholar] [CrossRef]
- Wang, X.; Qin, H.; Chen, Y.; Hu, J. Sensing mechanism of SnO2 (110) surface to CO: Density functional theory calculations. J. Phys. Chem. C 2014, 118, 28548–28561. [Google Scholar] [CrossRef]
- Bârsan, N.; Weimar, U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter. 2003, 15, R813. [Google Scholar] [CrossRef]
- Ayesh, A.I.; Mahmoud, S.T.; Ahmad, S.J.; Haik, Y. Novel hydrogen gas sensor based on Pd and SnO2 nanoclusters. Mater. Lett. 2014, 128, 354–357. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Shi, C.; Li, L.; Qin, H.; Hu, J. Sensing mechanism of SnO2 (110) surface to H2: Density functional theory calculations. Sens. Actuators B Chem. 2015, 220, 279–287. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Liu, Z.; Li, L.; Shi, C.; Qin, H.; Hu, J. CO2-sensing properties and mechanism of nano-SnO2 thick-film sensor. Sens. Actuators B Chem. 2016, 227, 73–84. [Google Scholar] [CrossRef]
- Oviedo, J.; Gillan, M.J. Energetics and Structure of Stoichiometric SnO2 Surfaces Studied by First-principles Calculations. Surf. Sci. 2000, 463, 93–101. [Google Scholar] [CrossRef]
- Oviedo, J.; Gillan, M.J. First-principles Study of the Interaction of Oxygen with the SnO2 (110) Surface. Surf. Sci. 2001, 490, 221–236. [Google Scholar] [CrossRef]
- Prades, J.D.; Cirera, A.; Morante, J.R.; Pruneda, J.M.; Ordejon, P. Ab Initio Study of NOx Compounds Adsorption on SnO2 Surface. Sens. Actuators B Chem. 2007, 126, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Jiang, X.C.; Yu, A.B. Adsorption of the OH Group on SnO2 (110) Oxygen Bridges: A Molecular Dynamics and Density Functional Theory Study. J. Phys. Chem. C. 2013, 117, 9962–9969. [Google Scholar] [CrossRef]
- Yang, M.R.; Chu, S.Y.; Chang, R.C. Synthesis and study of the SnO2 nanowires growth. Sens. Actuators B Chem. 2007, 122, 269–273. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1978; p. 102. [Google Scholar]
- Chikhale, L.P.; Patil, J.Y.; Rajgure, A.V.; Shaikh, F.I.; Mulla, I.S.; Suryavanshi, S.S. Coprecipitation synthesis of nanocrytalline SnO2: Effect of Fe doping on structural, morphological, optical and ethanol vapor response properties. Measurement 2014, 57, 46–52. [Google Scholar] [CrossRef]
- Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, T. Interactions of tin oxide surface with O2, H2O and H2. Surf. Sci. 1979, 86, 335–344. [Google Scholar] [CrossRef]
- Xu, J.Q.; Jia, X.H.; Lou, X.D.; Xi, G.X.; Han, J.J.; Gao, Q.H. Selective detection of HCHO gas using mixed oxides of ZnO/ZnSnO3. Sens. Actuators B Chem. 2007, 120, 694–699. [Google Scholar] [CrossRef]
- Tan, W.; Ruan, X.; Yu, Q.; Yu, Z.; Huang, X. Fabrication of a SnO2-based acetone gas sensor enhanced by molecular imprinting. Sensors 2015, 15, 352. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Ma, S.Y.; Wang, T.T.; Luo, J. Synthesis and enhanced acetone sensing properties of 3D porous flower-like SnO2 nanostructures. Mater. Lett. 2015, 143, 84–87. [Google Scholar] [CrossRef]
- Krivetsky, V.V.; Petukhov, D.V.; Eliseev, A.A.; Smirnov, A.V.; Rumyantseva, M.N.; Gaskov, A.M. Acetone Sensing by Modified SnO2 Nanocrystalline Sensor Materials. Nanotechnol. Basis Adv. Sens. 2011, 409–421. [Google Scholar]
- Li, J.; Tang, P.; Zhang, J.; Feng, Y.; Luo, R.; Chen, A.; Li, D. Facile synthesis and acetone sensing performance of hierarchical SnO2 Hollow microspheres with controllable size and shell thickness. Ind. Eng. Chem. Res. 2016, 55, 3588–3595. [Google Scholar] [CrossRef]
- Li, W.Q.; Ma, S.Y.; Luo, J.; Mao, Y.Z.; Cheng, L.; Gengzang, D.J.; Xu, X.L.; Yan, S.H. Synthesis of hollow SnO2 nanobelts and their application in acetone sensor. Mater. Lett. 2014, 132, 338–341. [Google Scholar] [CrossRef]
- Bagal, L.K.; Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S. Studies on the resistive response of nickel and cerium doped SnO2 thick films to acetone vapor. Ceram. Int. 2012, 38, 6171–6179. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Pandey, P.; Mishra, V.N.; Dwivedi, R. Structural and micro structural studies of PbO-doped SnO2 sensor for detection of methanol, propanol and acetone. J. Nat. Gas Chem. 2011, 20, 179–183. [Google Scholar] [CrossRef]
- Choi, S.J.; Jang, B.H.; Lee, S.J.; Min, B.K.; Rothschild, A.; Kim, I.D. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Inter. 2014, 6, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.H.; Ma, S.Y.; Xu, X.L.; Li, W.Q.; Luo, J.; Jin, W.X.; Wang, T.T.; Jiang, X.H.; Lu, Y.; Song, H.S. Preparation of SnO2-ZnO hetero-nanofibers and their application in acetone sensing performance. Mater. Lett. 2015, 159, 447–450. [Google Scholar] [CrossRef]
- Wen, Z.; Tian-Mo, L. Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism. Phys. B Condens. Matter. 2010, 405, 1345–1348. [Google Scholar] [CrossRef]
- Yang, M.; Huo, L.; Zhao, H.; Gao, S.; Rong, Z. Electrical properties and acetone-sensing characteristics of LaNi1−xTixO3 perovskite system prepared by amorphous citrate decomposition. Sens. Actuators B Chem. 2009, 143, 111–118. [Google Scholar] [CrossRef]
- Shan, H.; Liu, C.; Liu, L.; Li, S.; Wang, L.; Zhang, X.; Bo, X.; Chi, X. Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens. Actuators B Chem. 2013, 184, 243–247. [Google Scholar] [CrossRef]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal. Chem. 2010, 82, 3581–3587. [Google Scholar] [CrossRef] [PubMed]
- Delley, B. An All-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From Molecules to Solids with the DMol Approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Maki-Jaskari, M.A.; Rantala, T.T. Band structure and optical parameters of the SnO2 (110) surface. Phys. Rev. B 2001, 64, 075407. [Google Scholar] [CrossRef]
- Maki-Jaskari, M.A.; Rantala, T.T.; Golovanov, V.V. Computational study of charge accumulation at SnO2 (110) surface. Surf. Sci. 2005, 577, 127–138. [Google Scholar] [CrossRef]
Annealing Temperature (°C) | 400 | 500 | 600 | 700 | 800 |
Maximum Response | 1.073 | 1.035 | 1.582 | 1.477 | 1.358 |
Optimum Operating Temperature (°C) | 220 | 220 | 180 | 180 | 180 |
Materials | Preparation Method | Response | Concentration (ppm) | TO (°C) | Response Time/Recovery Time (s) | Ref |
---|---|---|---|---|---|---|
Y-doped SnO2 hollow nanofibers | electrospinning | 12.1 | 50 | 300 | -/- | [3] |
SnO2 nanowires | hydrothermal approach | 6.8 | 20 | 290 | -/- | [4] |
0.1 wt% Ni-SnO2 | spin-coating technique | 54.2 | 200 | 350 | -/- | [14] |
SnO2 hollow microspheres | hydrothermal method | 16 | 50 | 200 | -/- | [18] |
SnO2 nanotube | hydrothermal method | 6.4 | 20 | 350 | 10/9 | [22] |
SnO2 nanowires | hydrothermal method | 5.5 | 20 | 290 | 7/10 | [23] |
Aurelia-like SnO2 | hydrothermal method | 4.7 | 10 | 240 | 2/23 | [25] |
α-Fe2O3/SnO2 composites | hydrothermal method | 16.8 | 100 | 250 | 3/90 | [26] |
SnO2 thin films | dip-coating | 19 | 8 | room temperature | -/- | [28] |
Co-SnO2 thin films | spray pyrolysis technique | 20 | 0.1 | 330 | -/- | [29] |
SnO2 nanobelts | electrospinning method | 6.7 | 5 | 260 | -/- | [36] |
Ni and Ce doped SnO2 thick films | co-precipitation route | 7.7 | 100 | 300 | -/- | [38] |
PbO-doped SnO2 thick film | sol-gel process | 13.5 | 3500 | 250 | -/- | [39] |
RGO doped SnO2 nanofibers | electrospinning | 10 | 5 | 350 | -/- | [40] |
SnO2 nanomaterial | thermal synthesis | 18.5 | 100 | 250 | 4.3/156.3 | [41] |
SnO2-ZnO hetero-nanofibers | electrospinning | 85 | 100 | 300 | 9/7 | [42] |
SnO2-TiO2 | sol-gel method | 55 | 200 | 340 | 100/500 | [43] |
SnO2 thick films | co-precipitation route | 5.043 | 5 | 180 | 70/64 | Present work |
Model | dO-Sn (Å) | Eads (eV) | Qacetone (e) |
---|---|---|---|
C1 | 2.23 | 1.61 | 0.21 |
C2 | 2.34 | 1.47 | 0.18 |
C3 | 2.45 | 1.64 | 0.17 |
C4 | 2.31 | 1.61 | 0.21 |
C5 | 2.22 | 1.63 | 0.24 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Qin, H.; Cao, Y.; Zhang, H.; Hu, J. Acetone Sensing Properties and Mechanism of SnO2 Thick-Films. Sensors 2018, 18, 3425. https://doi.org/10.3390/s18103425
Chen Y, Qin H, Cao Y, Zhang H, Hu J. Acetone Sensing Properties and Mechanism of SnO2 Thick-Films. Sensors. 2018; 18(10):3425. https://doi.org/10.3390/s18103425
Chicago/Turabian StyleChen, Yanping, Hongwei Qin, Yue Cao, Heng Zhang, and Jifan Hu. 2018. "Acetone Sensing Properties and Mechanism of SnO2 Thick-Films" Sensors 18, no. 10: 3425. https://doi.org/10.3390/s18103425
APA StyleChen, Y., Qin, H., Cao, Y., Zhang, H., & Hu, J. (2018). Acetone Sensing Properties and Mechanism of SnO2 Thick-Films. Sensors, 18(10), 3425. https://doi.org/10.3390/s18103425