Measurement of Atmospheric Dimethyl Sulfide with a Distributed Feedback Interband Cascade Laser
Abstract
:1. Introduction
2. Sensor Configuration
2.1. Working Spectral Band Selecting
2.2. Setup
2.3. Reference WMS-2f Signal Acquisition for MCSF
2.4. Optical Fringes Removal
3. Sensor Performance Verification
3.1. Detection Ability
3.2. Measurement Linearity and Uncertainty
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stefels, J.; Steinke, M.; Turner, S.; Malin, G.; Belviso, S. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007, 83, 245–275. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 1990, 30, 1–29. [Google Scholar] [CrossRef]
- Bates, T.S.; Lamb, B.K.; Guenther, A.; Dignon, J.; Stoiber, R.E. Sulfur emissions to the atmosphere from natural sourees. J. Atmos. Chem. 1992, 14, 315–337. [Google Scholar] [CrossRef]
- Spiro, P.A.; Jacob, D.J.; Logan, J.A. Global inventory of sulfur emissions with 1° × 1° resolution. J. Geophys. Res. Atmos. 1992, 97, 6023–6036. [Google Scholar] [CrossRef]
- Turner, S.M.; Liss, P.S. Measurements of various sulphur gases in a coastal marine environment. J. Atmos. Chem. 1985, 2, 223–232. [Google Scholar] [CrossRef]
- Kim, K.H.; Andreae, M.O. Carbon disulfide in seawater and the marine atmosphere over the north atlantic. J. Geophys. Res. Atmos. 1987, 92, 14733–14738. [Google Scholar] [CrossRef]
- Kettle, A.J.; Andreae, M.O.; Amouroux, D. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict seasurface DMS as a function of latitude, longitude, and month. Glob. Biogeochem. Cycles 1987, 13, 399–444. [Google Scholar] [CrossRef]
- Lucas, D.D.; Prinn, R.G. Parametric sensitivity and uncertainty analysis of dimethylsulfide oxidation in the clear-sky remote marine boundary layer. Atmos. Chem. Phys. 2004, 4, 1505–1525. [Google Scholar] [CrossRef]
- Andreae, M.O.; Ferek, R.J.; Bermond, F. Dimethyl sulfide in the marine atmosphere. J. Geophys. Res. Atmos. 1985, 90, 12891–12900. [Google Scholar] [CrossRef]
- Watts, S.F. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos. Environ. 2000, 34, 761–779. [Google Scholar] [CrossRef]
- Malin, G.; Turner, S.M.; Liss, P.S. Sulfur The plankton/climate connection. J. Phycol. 1992, 28, 590–597. [Google Scholar] [CrossRef]
- Gunson, J.R.; Spall, S.A.; Anderson, T.R. Climate sensitivity to ocean dimethylsulphide emissions. Geophys. Res. Lett. 2006, 33, 266–280. [Google Scholar] [CrossRef]
- Li, J.Y.; Luo, G.; Du, Z.H.; Ma, Y.W. Hollow waveguide enhanced dimethyl sulfide sensor based on a 3.3 μm interband cascade laser. Sens. Actuators B Chem. 2017, 255, 3550–3557. [Google Scholar] [CrossRef]
- Ping, S.S. Treatment of waste gas containing dimethyl sulfide by adsorption-recovery process. Environ. Prot. Chem. Ind. 2003, 23, 22–24. [Google Scholar]
- Wang, Z.M.; Liu, J.; Dai, Y.C.; Dong, W.Y.; Zhang, S.C.; Chen, J.M. Dimethyl sulfide photocatalytic degradation in a light-emitting-diode continuous reactor: Kinetic and mechanistic study. Ind. Eng. Chem. Res. 2011, 50, 7977–7984. [Google Scholar] [CrossRef]
- Glindemann, D.; Novak, J.; Witherspoon, J. Dimethyl sulfoxide (DMSO) waste residues and municipal waste water odor by dimethyl sulfide (DMS): The north-east WPCP plant of Philadelphia. Environ. Sci. Technol. 2006, 40, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.X. Cnki. net. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode =CJFQ&dbname= CJFD2010&filename=NBHG201002019&uid= WEEvREcwSlJHSldRa1FhdkJkVWI0 UTA3TkgrVUgzR003VjY3N0ZHNklJTT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MTM4OTJUM3FUcldNMUZyQ1VSTEtmYnVkckZ5N25VYnpBS3kvRGFiRzRIOUhNclk5RWJZUjhlWDFMdXhZUzdEaDE= (accessed on 15 March 2010).
- Lewis, A.C.; Bartle, K.D.; Rattner, L. High-speed isothermal analysis of atmospheric isoprene and dms using on-line two-dimensional gas chromatography. Environ. Sci. Technol. 1997, 31, 3209–3217. [Google Scholar] [CrossRef]
- Dai, J.S. Determination of sulfur compounds in ambient air by GC/MS. Adm. Technol. Environ. Monit. 2010, 22, 42–44. [Google Scholar]
- Suchorskawoźniak, P.; Nawrot, W.; Rac, O.; Fiedot, M.; Teterycz, H. Improving the sensitivity of the zno gas sensor to dimethyl sulfide. IOP Conf. Ser. Mater. Sci. Eng. 2016, 104. [Google Scholar] [CrossRef]
- Maeda, I.; Yamashiro, H.; Yoshioka, D.; Onodera, M.; Ueda, S.; Kawase, M.; Miyasaka, H.; Yagi, K. Colorimetric dimethyl sulfide sensor using rhodovulum sulfidophilum cells based on intrinsic pigment conversion by crta. Appl. Microbiol. Biotechnol. 2006, 70, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Persson, C.; Leck, C. Determination of reduced sulfur compounds in the atmosphere using a cotton scrubber for oxidant removal and gas chromatography with flame photometric detection. Anal. Chem. 2012, 66, 983–987. [Google Scholar] [CrossRef]
- Li, S.; Yin, H.; Li, G.L.; He, J.C.; Hu, C.W. GC determination of stenchy sulfides in polluted air. Phys. Test. Chem. Anal. 2007, 43, 582–584. [Google Scholar]
- Ma, Z.Y.; Pang, X.L.; Gao, L.; He, C.; Zhong, G.J. Fast analysis of gaseous pollutant in environment by handy fourier transform infrared spectrometer. Environ. Monit. Chin. 2007, 23, 44–46. [Google Scholar]
- Du, Z.H.; Wan, J.X.; Li, J.Y.; Luo, G.; Gao, H.; Ma, Y.W. Detection of atmospheric methyl mercaptan using wavelength modulation spectroscopy with multicomponent spectral fitting. Sensors 2017, 17, 379. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.H.; Li, J.Y.; Cao, X.H.; Gao, H.; Ma, Y.W. High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in the mid-infrared fingerprint region. Sens. Actuators B Chem. 2017, 247, 384–391. [Google Scholar] [CrossRef]
- Thévenaz, L.; Robert, P.; Schilt, S. Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation. Appl. Opt. 2003, 42, 6728–6738. [Google Scholar]
- Goldenstein, C.S.; Strand, C.L.; Schultz, I.A.; Sun, K.; Jeffries, J.B.; Hanson, R.K. Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 2014, 53, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Du, Z.H.; Li, J.Y. Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy. Rev. Sci. Instrum. 2015, 86, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.G.; Yin, W.B.; Huang, T.; Zhao, Y.T.; Li, C.Y.; Jia, S.T. Analysis of gas absorption coefficient at various pressures. Spectrosc. Spectral Anal. 2004, 24, 135–137. [Google Scholar]
- Dong, F.Z.; Kan, R.F.; Liu, W.Q. Tunable diode laser absorption spectroscopic technology and its applications in air quality monitoring. Chin. J. Quantum Electron. 2005, 22, 315–324. [Google Scholar]
- Ma, Y.F.; Tong, Y.; He, Y. Research progress of quartz-enhanced photoacoustic spectroscopy. Chin. J. Lumin. 2017, 38, 839–848. [Google Scholar]
- Du, Z.H.; Wang, R.X.; Li, J.Y. Preliminary investigation of the capillary adsorption for a hollow waveguide based laser ammonia analyzer. Int. Symp. Optoelectron. Technol. Appl. 2016, 157. [Google Scholar] [CrossRef]
- Du, Z.H.; Zhen, W.M.; Zhang, Z.Y. Detection of methyl mercaptan with a 3393-nm distributed feedback interband cascade laser. Appl. Phys. B 2016, 122, 1–8. [Google Scholar] [CrossRef]
- Du, Z.H.; Zhang, Z.Y.; Li, J.Y. The Development of Ammonia Sensor Based on Tunable Diode Laser Absorption Spectroscopy with Hollow Waveguide. Spectrosc. Spectral Anal. 2016, 36, 2669–2673. [Google Scholar]
- Du, Z.H.; Luo, G.; An, Y.; Li, J.Y. Dynamic spectral characteristics measurement of DFB interband cascade laser under injection current tuning. Appl. Phys. Lett. 2016, 109, 011903. [Google Scholar] [CrossRef]
- Werle, P. Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence. Appl. Phys. B 2011, 102, 313–329. [Google Scholar] [CrossRef]
- Du, Z.H.; Yang, X.; Li, J.Y. Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor. Rev. Sci. Instrum. 2017, 88, 1–6. [Google Scholar] [CrossRef] [PubMed]
- British Standards Institution. Gas Analysis—Preparation of Calibration Gas Mixtures-Gravimetric Methods; British Standards Institution: London, UK, 2006. [Google Scholar]
DMS Peak Wavelength (nm) | Peak Absorption (1 ppm×m) | λ (nm) (Interference) | Absorbance (Interference) | Distance (Interference) |
---|---|---|---|---|
3336.710 | 0.118 × 10−3 | 3336.309 | 0.433 × 10−5 | 0.401 |
3367.299 | 0.387 × 10−3 | 3367.554 | 0.911 × 10−2 | 0.255 |
DMS (Channel 2) | N2 (Channel 3) | ||
---|---|---|---|
Flow (mL/min) | Concentration (ppm) | Flow (mL/min) | |
Air (25 mL/min, channel 1) | 5 | 2.02 | 20 |
10 | 4.04 | 15 | |
15 | 6.06 | 10 | |
20 | 8.08 | 5 | |
25 | 10.1 | 0 |
Air (Channel 1) | N2 (Channel 3) | ||
---|---|---|---|
Flow (mL/min) | Concentration of CH4/H2O (ppm/%) | Flow (mL/min) | |
DMS (25 mL/min, channel 2) | 5 | 0.19/0.14 | 20 |
10 | 0.38/0.28 | 15 | |
15 | 0.57/0.42 | 10 | |
20 | 0.76/0.56 | 5 | |
25 | 0.95/0.70 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Du, Z.; Yuan, L.; Ma, Y.; Wang, X.; Han, R.; Meng, S. Measurement of Atmospheric Dimethyl Sulfide with a Distributed Feedback Interband Cascade Laser. Sensors 2018, 18, 3216. https://doi.org/10.3390/s18103216
Wang S, Du Z, Yuan L, Ma Y, Wang X, Han R, Meng S. Measurement of Atmospheric Dimethyl Sulfide with a Distributed Feedback Interband Cascade Laser. Sensors. 2018; 18(10):3216. https://doi.org/10.3390/s18103216
Chicago/Turabian StyleWang, Shuanke, Zhenhui Du, Liming Yuan, Yiwen Ma, Xiaoyu Wang, Ruiyan Han, and Shuo Meng. 2018. "Measurement of Atmospheric Dimethyl Sulfide with a Distributed Feedback Interband Cascade Laser" Sensors 18, no. 10: 3216. https://doi.org/10.3390/s18103216
APA StyleWang, S., Du, Z., Yuan, L., Ma, Y., Wang, X., Han, R., & Meng, S. (2018). Measurement of Atmospheric Dimethyl Sulfide with a Distributed Feedback Interband Cascade Laser. Sensors, 18(10), 3216. https://doi.org/10.3390/s18103216