qCon: QoS-Aware Network Resource Management for Fog Computing
Abstract
:1. Introduction
2. Background
2.1. Containers in Fog Computing
2.2. Network Driver Models in Containers
2.3. Network Bandwidth Control on Containers
3. Design of qCon
3.1. Design Goals
3.1.1. Implementing a Lightweight Framework
3.1.2. Enabling a Proportional Share Scheduling Policy
3.1.3. Concurrent Support of Multiple Performance Policies
3.2. qCon Architecture
3.2.1. qCon Scheduler
3.2.2. qCon Credit Allocator
3.2.3. qCon Configuration Interface
3.3. Scheduling Policies
3.3.1. Proportional Share Scheduling
3.3.2. Support for Work-Conserving
3.3.3. Minimum Bandwidth Reservation and Maximum Bandwidth Limitation
3.3.4. Combination of the Three Scheduling Policies
Algorithm 1: Combination of the three scheduling policies with the work-conserving mechanism. |
total_weight ← the sum of weights of all containers; |
weight_left ← total_weight; |
total_credit ← the total amount of credits; |
credit_left ← 0; |
4. Evaluation
4.1. Multiple Scheduling Policies
4.1.1. Proportional Share Scheduling Evaluation
- Weight set 1 to 1 : {1, 1, 1};
- Weight set 1 to 3 : {1, 2, 3};
- Weight set 1 to 5 : {1, 3, 5}.
4.1.2. Minimum Bandwidth Reservation Evaluation
4.1.3. Maximum Bandwidth Limitation Evaluation
4.1.4. Evaluation of Concurrent Support of Multiple Policies
4.2. CPU Overhead
4.3. Network Latency
5. Related Work
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Chandra, A.; Weissman, J.; Heintz, B. Decentralized edge clouds. IEEE Internet Comput. 2013, 17, 70–73. [Google Scholar] [CrossRef]
- He, Q.; Zhou, S.; Kobler, B.; Duffy, D.; McGlynn, T. Case study for running HPC applications in public clouds. In Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, Chicago, IL, USA, 21–25 June 2010; ACM: New York, NY, USA, 2010; pp. 395–401. [Google Scholar]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; ACM: New York, NY, USA, 2012; pp. 13–16. [Google Scholar]
- Dastjerdi, A.V.; Buyya, R. Fog computing: Helping the Internet of Things realize its potential. Computer 2016, 49, 112–116. [Google Scholar] [CrossRef]
- Villari, M.; Fazio, M.; Dustdar, S.; Rana, O.; Ranjan, R. Osmotic computing: A new paradigm for edge/cloud integration. IEEE Cloud Comput. 2016, 3, 76–83. [Google Scholar] [CrossRef]
- Felter, W.; Ferreira, A.; Rajamony, R.; Rubio, J. An updated performance comparison of virtual machines and linux containers. In Proceedings of the 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, PA, USA, 29–31 March 2015; pp. 171–172. [Google Scholar]
- Bellavista, P.; Zanni, A. Feasibility of fog computing deployment based on docker containerization over raspberrypi. In Proceedings of the 18th International Conference on Distributed Computing and Networking, Hyderabad, India, 5–7 January 2017; ACM: New York, NY, USA, 2017; p. 16. [Google Scholar]
- Liu, P.; Willis, D.; Banerjee, S. Paradrop: Enabling lightweight multi-tenancy at the network’s extreme edge. In Proceedings of the IEEE/ACM Symposium on Edge Computing (SEC), Washington, DC, USA, 27–28 October 2016; pp. 1–13. [Google Scholar]
- Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2. [Google Scholar]
- Hubert, B.; Graf, T.; Maxwell, G.; van Mook, R.; van Oosterhout, M.; Schroeder, P.; Spaans, J.; Larroy, P. Linux advanced routing & traffic control. In Proceedings of the Ottawa Linux Symposium, Ottawa, ON, Canada, 26–29 June 2002; Volume 213. [Google Scholar]
- Dusia, A.; Yang, Y.; Taufer, M. Network quality of service in docker containers. In Proceedings of the 2015 IEEE International Conference on Cluster Computing (CLUSTER), Chicago, IL, USA, 8–11 September 2015; pp. 527–528. [Google Scholar]
- Hong, C.H.; Lee, K.; Park, H.; Yoo, C. ANCS: Achieving QoS through Dynamic Allocation of Network Resources in Virtualized Clouds. Sci. Prog. 2016, 2016, 4708195. [Google Scholar] [CrossRef]
- Yi, S.; Li, C.; Li, Q. A survey of fog computing: Concepts, applications and issues. In Proceedings of the 2015 Workshop on Mobile Big Data, Hangzhou, China, 21 June 2015; ACM: New York, NY, USA, 2015; pp. 37–42. [Google Scholar]
- Caprita, B.; Chan, W.C.; Nieh, J.; Stein, C.; Zheng, H. Group Ratio Round-Robin: O (1) Proportional Share Scheduling for Uniprocessor and Multiprocessor Systems. In Proceedings of the USENIX Annual Technical Conference, Anaheim, CA, USA, 10–15 April 2005; pp. 337–352. [Google Scholar]
- De Brito, M.S.; Hoque, S.; Steinke, R.; Willner, A.; Magedanz, T. Application of the fog computing paradigm to smart factories and cyber-physical systems. Trans. Emerg. Telecommun. Technol. 2018, 29, e3184. [Google Scholar] [CrossRef]
- Habak, K.; Ammar, M.; Harras, K.A.; Zegura, E. Femto clouds: Leveraging mobile devices to provide cloud service at the edge. In Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing (CLOUD), New York, NY, USA, 27 June–2 July 2015; pp. 9–16. [Google Scholar]
- Silva, P.M.P.; Rodrigues, J.; Silva, J.; Martins, R.; Lopes, L.; Silva, F. Using edge-clouds to reduce load on traditional wifi infrastructures and improve quality of experience. In Proceedings of the 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017; pp. 61–67. [Google Scholar]
- Habib, I. Virtualization with kvm. Linux J. 2008, 2008, 8. [Google Scholar]
- Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.; Pratt, I.; Warfield, A. Xen and the art of virtualization. In Proceedings of the ACM SIGOPS Operating Systems Review, Bolton Landing, NY, USA, 19–22 October 2003; ACM: New York, NY, USA, 2003; Volome 37, pp. 164–177. [Google Scholar]
- Lee, K.; Kim, H.; Kim, B.; Yoo, C. Analysis on network performance of container virtualization on IoT devices. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 18–20 October 2017; pp. 35–37. [Google Scholar]
- Lee, K.; Kim, Y.; Yoo, C. The Impact of Container Virtualization on Network Performance of IoT Devices. Mob. Inf. Syst. 2018, 2018, 9570506. [Google Scholar] [CrossRef]
- Shreedhar, M.; Varghese, G. Efficient fair queuing using deficit round-robin. IEEE/ACM Trans. Netw. 1996, 4, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Amento, B.; Balasubramanian, B.; Hall, R.J.; Joshi, K.; Jung, G.; Purdy, K.H. FocusStack: Orchestrating Edge Clouds using location-based focus of attention. In Proceedings of the 2016 IEEE/ACM Symposium on Edge Computing (SEC), Washington, DC, USA, 27–28 October 2016; pp. 179–191. [Google Scholar]
- Khalid, J.; Rozner, E.; Felter, W.; Xu, C.; Rajamani, K.; Ferreira, A.; Akella, A. Iron: Isolating Network-based CPU in Container Environments. In Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), USENIX, Renton, WA, USA, 9–11 April 2018. [Google Scholar]
- Jang, M.; Lee, H.; Schwan, K.; Bhardwaj, K. SOUL: An edge-cloud system for mobile applications in a sensor-rich world. In Proceedings of the 2016 IEEE/ACM Symposium on Edge Computing (SEC), Washington, DC, USA, 27–28 October 2016; pp. 155–167. [Google Scholar]
- Vinel, A.; Breu, J.; Luan, T.H.; Hu, H. Emerging technology for 5G-enabled vehicular networks. IEEE Wirel. Commun. 2017, 24, 12. [Google Scholar] [CrossRef]
- Teerapittayanon, S.; McDanel, B.; Kung, H. Distributed deep neural networks over the cloud, the edge and end devices. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 328–339. [Google Scholar]
- Simoens, P.; Xiao, Y.; Pillai, P.; Chen, Z.; Ha, K.; Satyanarayanan, M. Scalable crowd-sourcing of video from mobile devices. Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, Taipei, Taiwan, 25–28 June 2013; ACM: New York, NY, USA, 2013; pp. 139–152. [Google Scholar] [Green Version]
- Cherkasova, L.; Gupta, D.; Vahdat, A. Comparison of the three CPU schedulers in Xen. SIGMETRICS Perform. Eval. Rev. 2007, 35, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Fattah, H.; Leung, C. An overview of scheduling algorithms in wireless multimedia networks. IEEE Wirel. Commun. 2002, 9, 76–83. [Google Scholar] [CrossRef]
- Bensaou, B.; Tsang, D.H.; Chan, K.T. Credit-based fair queueing (CBFQ): A simple service-scheduling algorithm for packet-switched networks. IEEE/ACM Trans. Netw. 2001, 9, 591–604. [Google Scholar] [CrossRef]
- Paščinski, U.; Trnkoczy, J.; Stankovski, V.; Cigale, M.; Gec, S. QoS-aware orchestration of network intensive software utilities within software defined data centres. J. Grid Comput. 2018, 16, 85–112. [Google Scholar] [CrossRef]
- Hong, C.H.; Kim, Y.P.; Park, H.; Yoo, C. Synchronization support for parallel applications in virtualized clouds. J. Supercomput. 2016, 72, 3348–3365. [Google Scholar] [CrossRef]
- Park, H.; Yoo, S.; Hong, C.H.; Yoo, C. Storage SLA guarantee with novel ssd i/o scheduler in virtualized data centers. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 2422–2434. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.; Ahn, J.; Sung, K.; Park, J. Provisioning service differentiation for virtualized network devices. In Proceedings of the International Conference on Networking and Services, Venice/Mestre, Italy, 22–27 May 2011. [Google Scholar]
- Hong, C.H.; Spence, I.; Nikolopoulos, D.S. FairGV: Fair and fast GPU virtualization. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 3472–3485. [Google Scholar] [CrossRef]
- Tan, H.; Huang, L.; He, Z.; Lu, Y.; He, X. DMVL: An I/O bandwidth dynamic allocation method for virtual networks. J. Netw. Comput. Appl. 2014, 39, 104–116. [Google Scholar] [CrossRef]
- Raghavan, B.; Vishwanath, K.; Ramabhadran, S.; Yocum, K.; Snoeren, A.C. Cloud control with distributed rate limiting. ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 337–348. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Geng, Y.; Jeyakumar, V.; Kabbani, A.; Porter, G.; Vahdat, A. SENIC: Scalable NIC for End-Host Rate Limiting. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’14), Seattle, WA, USA, 2–4 April 2014; Volume 14, pp. 475–488. [Google Scholar]
- Brogi, A.; Forti, S. QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J. 2017, 4, 1185–1192. [Google Scholar] [CrossRef]
- Skarlat, O.; Nardelli, M.; Schulte, S.; Dustdar, S. Towards qos-aware fog service placement. In Proceedings of the 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017; pp. 89–96. [Google Scholar]
- Heidari, P.; Lemieux, Y.; Shami, A. Qos assurance with light virtualization-a survey. In Proceedings of the 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Luxembourg, 12–15 December 2016; pp. 558–563. [Google Scholar]
- Almesberger, W. Linux Traffic Control-Implementation Overview. Available online: https://www.almesberger.net/cv/papers/tcio8.pdf (accessed on 13 October 2018).
- Hwang, J.; Hong, C.H.; Suh, H.J. Dynamic inbound rate adjustment scheme for virtualized cloud data centers. IEICE Trans. Inf. Syst. 2016, 99, 760–762. [Google Scholar] [CrossRef]
Platform | Native Docker | Linux Traffic Control | qCon |
---|---|---|---|
Latency (ms) | 0.5 | 0.6 | 0.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, C.-H.; Lee, K.; Kang, M.; Yoo, C. qCon: QoS-Aware Network Resource Management for Fog Computing. Sensors 2018, 18, 3444. https://doi.org/10.3390/s18103444
Hong C-H, Lee K, Kang M, Yoo C. qCon: QoS-Aware Network Resource Management for Fog Computing. Sensors. 2018; 18(10):3444. https://doi.org/10.3390/s18103444
Chicago/Turabian StyleHong, Cheol-Ho, Kyungwoon Lee, Minkoo Kang, and Chuck Yoo. 2018. "qCon: QoS-Aware Network Resource Management for Fog Computing" Sensors 18, no. 10: 3444. https://doi.org/10.3390/s18103444
APA StyleHong, C. -H., Lee, K., Kang, M., & Yoo, C. (2018). qCon: QoS-Aware Network Resource Management for Fog Computing. Sensors, 18(10), 3444. https://doi.org/10.3390/s18103444