A Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson’s Disease
Abstract
:1. Introduction
2. Hardware and Software of the PD Assessment System
2.1. System Setup
2.2. System Software
2.2.1. Initial Setup for Hand Tracking
2.2.2. Continuous Hand and Finger Tracking
2.2.3. Human Computer Interface and System Management
3. Performance Comparison of the HCI Hand Tracker with Consumer Devices
3.1. Experimental Setup
3.1.1. Leap Motion and HCI Setup
3.1.2. Intel SR300 and HCI Setup
4. Automated Assessment of Upper Limb UPDRS Tasks
4.1. Clinical Data Acquisition
4.2. Movement Characterization by Kinematic Features
4.3. Automated UPDRS Task Assessment by Supervised Classifiers
5. Results
5.1. Hand Tracking Accuracy of the HCI Compared to Consumer Devices
5.1.1. HCI—Leap Motion Tracking Accuracy Comparison
5.1.2. HCI—RealSense SR300 Tracking Accuracy Comparison
5.2. Selection of Discriminant Kinematic Parameters
5.3. Accuracies of the Supervised Classifiers in UPDRS Task Assessment
6. Discussion
6.1. Accuracy Comparison of the HCI Tracker Respect to Commercial Devices
6.2. Kinematic Parameter Selection
6.3. Automated Assessments by Supervised Classifiers
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pal, G.; Goetz, C.G. Assessing bradykinesia in Parkinsonian Disorders. Front. Neurol. 2013, 4, 54. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Giuffrida, J.P.; Chen, R.; Payne, M.; Mazzella, F.; Dunn, E.; Vaughan, J.E.; Duker, A.P.; Sahay, A.; Kim, S.J.; et al. Differential Response of Speed, Amplitude and Rhythm to Dopaminergic Medications in Parkinson’s Disease. Mov. Disord. 2011, 26, 2504–2508. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Bonato, P.; Nahab, F.B.; Maetzler, W.; Dean, J.M.; Klucken, J.; Eskofier, B.M.; Merola, A.; Horak, F.; Lang, A.E.; et al. Movement Disorders Society Task Force on Technology. Technology in Parkinson’s disease: Challenges and opportunities. Mov. Disord. 2016, 31, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Lorincz, K.; Hughes, R.; Huggins, N.; Growdon, J.; Standaert, D.; Akay, M.; Dy, J.; Welsh, M.; Bonato, P. Monitoring Motor Fluctuations in Patients with Parkinson’s Disease Using Wearable Sensors. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 864–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, M.; Marder, K.; Cote, L.; Mayeux, R. Interrater reliability of the Unified Parkinson’s Disease Rating Scale motor examination. Mov. Disord. 1994, 9, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Mera, T.O.; Heldman, D.A.; Espay, A.J.; Payne, M.; Giuffrida, J.P. Feasibility of home-based automated Parkinson’s disease motor assessment. J. Neurosci. Methods 2012, 203, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Heldman, D.A.; Giuffrida, J.P.; Chen, R.; Payne, M.; Mazzella, F.; Duker, A.P.; Sahay, A.; Kim, S.J.; Revilla, F.J.; Espay, A.J. The modified bradykinesia rating scale for Parkinson’s disease: Reliability and comparison with kinematic measures. Mov. Disord. 2011, 26, 1859–1863. [Google Scholar] [CrossRef] [PubMed]
- Taylor Tavares, A.L.; Jefferis, G.S.; Koop, M.; Hill, B.C.; Hastie, T.; Heit, G.; Bronte-Stewart, H.M. Quantitative measurements of alternating finger tapping in Parkinson’s disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation. Mov. Disord. 2005, 20, 1286–1298. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Beaton, D.E.; Morgante, F.; Gunraj, C.A.; Lang, A.E.; Chen, R. Impairments of speed and amplitude of movement in Parkinson’s disease: A pilot study. Mov. Disord. 2009, 24, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, J.; Ambroise, J.; Cremers, J.; Sharei, H.; Delvaux, V.; Macq, B.; Garraux, G. Finger Tapping Clinimetric Score Prediction in Parkinson’s Disease Using Low-Cost Accelerometers. Comput. Intell. Neurosci. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Oess, N.P.; Wanek, J.; Curt, A. Design and evaluation of a low-cost instrumented glove for hand function assessment. J. Neuroeng. Rehabil. 2012, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, T.; Nyholm, D.; Westin, J.; Dougherty, M. A computer vision framework for finger-tapping evaluation in Parkinson’s disease. Artif. Intell. Med. 2014, 60, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, C.; Nerino, R.; Chimienti, A.; Pettiti, G.; Pianu, D.; Albani, G.; Azzaro, C.; Contin, L.; Cimolin, V.; Mauro, A. Remote monitoring and rehabilitation for patients with neurological diseases. In Proceedings of the 10th International Conference on Body Area Networks (BODYNETS 2014), London, UK, 29 September–1 October 2014; pp. 76–82. [Google Scholar]
- Jobbagy, A.; Harcos, P.; Karoly, R.; Fazekas, G. Analysis of finger-tapping movement. J. Neurosci. Methods 2005, 141, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.H.; Rovini, E.; Dolciotti, C.; Bongioanni, P.; De Petris, G.; Cavallo, F. Leap motion evaluation for assessment of upper limb motor skills in Parkinson’s disease. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 116–121. [Google Scholar] [CrossRef]
- Bank, J.M.P.; Marinus, J.; Meskers, C.G.M.; De Groot, J.H.; Van Hilten, J.J. Optical Hand Tracking: A Novel Technique for the Assessment of Bradykinesia in Parkinson’s Disease. Mov. Disord. Clin. Pract. 2017, 4, 875–883. [Google Scholar] [CrossRef]
- Dror, B.; Yanai, E.; Frid, A.; Peleg, N.; Goldenthal, N.; Schlesinger, I.; Hel-Or, H.; Raz, S. Automatic assessment of Parkinson’s Disease from natural hands movements using 3D depth sensor. In Proceedings of the IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI 2014), Eliat, Israel, 3–5 December 2014. [Google Scholar]
- Ferraris, C.; Pianu, D.; Chimienti, A.; Pettiti, G.; Cimolin, V.; Cau, N.; Nerino, R. Evaluation of Finger Tapping Test Accuracy using the LeapMotion and the Intel RealSense Sensors. In Proceedings of the 37th International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015), Milan, Italy, 25–29 August 2015. [Google Scholar]
- Han, J.; Shao, L.; Shotton, J. Enhanced computer vision with Microsoft Kinect sensor: A review. IEEE Trans. Cybern. 2013, 43, 1318–1334. [Google Scholar] [CrossRef] [PubMed]
- Galna, B.; Jackson, D.; Mhiripiri, D.; Olivier, P.; Rochester, L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 2014, 39, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Leap Motion Controller. Available online: https://www.leapmotion.com (accessed on 3 August 2018).
- Intel Developer Zone. Available online: https://software.intel.com/en-us/realsense/previous (accessed on 3 August 2018).
- Lu, W.; Tong, Z.; Chu, J. Dynamic Hand Gesture Recognition with Leap Motion Controller. IEEE Signal Process. Lett. 2016, 23, 1188–1192. [Google Scholar] [CrossRef]
- Bassily, D.; Georgoulas, C.; Guetler, J.; Linner, T.; Bock, T. Intuitive and Adaptive Robotic Arm Manipulation using the Leap Motion Controller. In Proceedings of the 41st International Symposium on Robotics (ISR/Robotik 2014), Munich, Germany, 2–3 June 2014. [Google Scholar]
- Iosa, M.; Morone, G.; Fusco, A.; Castagnoli, M.; Fusco, F.R.; Pratesi, L.; Paolucci, S. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: A feasibility pilot study. Top. Stroke Rehabil. 2015, 22, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Marin, G.; Dominio, F.; Zanuttigh, P. Hand gesture recognition with jointly calibrated Leap Motion and depth sensor. Multimed. Tools Appl. 2016, 75, 14991–15015. [Google Scholar] [CrossRef]
- Weichert, F.; Bachmann, D.; Rudak, B.; Fisseler, D. Analysis of the Accuracy and Robustness of the Leap Motion. Sensors 2013, 13, 6380–6393. [Google Scholar] [CrossRef] [PubMed]
- Guna, J.; Jakus, G.; Pogacnik, M.; Tomazic, S.; Sodnik, J. An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking. Sensors 2014, 14, 3702–3720. [Google Scholar] [CrossRef] [PubMed]
- Smeragliuolo, A.H.; Hill, N.J.; Disla, L.; Putrino, D. Validation of the Leap Motion Controller using markered motion capture technology. J. Biomech. 2016, 49, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Niechwiej-Szwedo, E.; Gongalez, D.; Nouredanesh, M.; Tung, J. Evaluation of the Leap Motion Controller during the performance of visually-guided upper limb movements. PLoS ONE 2018, 13, e0193639. [Google Scholar] [CrossRef] [PubMed]
- Tung, J.Y.; Lulic, T.; Gonzalez, D.A.; Tran, J.; Dickerson, C.R.; Roy, E.A. Evaluation of a portable markerless finger position capture device: Accuracy of the Leap Motion controller in healthy adults. Physiol. Meas. 2015, 36, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Carfagni, M.; Furferi, R.; Governi, L.; Servi, M.; Uccheddu, F.; Volpe, Y. On the performance of the Intel SR300 depth camera: Metrological and critical characterization. IEEE Sens. J. 2017, 17, 4508–4519. [Google Scholar] [CrossRef]
- Asselin, M.; Lasso, A.; Ungi, T.; Fichtinger, G. Towards webcam-based tracking for interventional navigation. In Proceedings of the Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling, Huston, TX, USA, 10–15 February 2018; Volume 10576. [Google Scholar] [CrossRef]
- House, R.; Lasso, A.; Harish, V.; Baum, Z.; Fichtinger, G. Evaluation of the Intel RealSense SR300 camera for image-guided interventions and application in vertebral level localization. In Proceedings of the Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling, Orlando, FL, USA, 11–16 February 2017; Volume 10135. [Google Scholar] [CrossRef]
- Intel RealSense SDK. Available online: https://software.intel.com/en-us/realsense-sdk-windows-eol (accessed on 6 August 2018).
- Needham, C.J.; Boyle, R.D. Performance evaluation metrics and statistics for positional tracker evaluation. In Proceedings of the International Conference on Computer Vision Systems, Graz, Austria, 1–3 April 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 278–289. [Google Scholar]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media: Sebastopol, CA, USA, 2008; 580p. [Google Scholar]
- Lee, D.; Plataniotis, K.N. A Taxonomy of Color Constancy and Invariance Algorithms. In Advances in Low-Level Color Image Processing; Springer: Dordrecht, The Netherlands, 2014; pp. 55–94. [Google Scholar]
- Intel RealSense Archived. Available online: https://software.intel.com/en-us/articles/introducing-the-intel-realsense-camera-sr300 (accessed on 11 August 2018).
- BTS S.p.A. Products. Available online: http://www.btsbioengineering.com/it/prodotti/smart-dx (accessed on 11 August 2018).
- Point Cloud Library. Available online: http://pointclouds.org (accessed on 3 August 2018).
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Fisher, A. The Use of Multiple Measurements in Taxonomic Problems. Annu. Hum. Genet. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Data Mining: Practice Machine Learning Tools and Techniques. Available online: https://www.cs.waikato.ac.nz/ml/weka/book.html (accessed on 28 September 2018).
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
Accuracy Parameters | FT | OC | PS |
---|---|---|---|
DMEAN (mm) | 2.5 | 3.1 | 4.1 |
SD (mm) | 3 | 3.5 | 4 |
MAD (mm) | 5.2 | 6.0 | 7 |
Accuracy Parameters | FT | OC | PS |
---|---|---|---|
DMEAN (mm) | 11.7 | 13.8 | 20.1 |
SD (mm) | 13.3 | 22.8 | 26.6 |
MAD (mm) | 32.1 | 35.2 | 45.1 |
Name | Meaning | Spearman Correlation Coefficient ρ |
---|---|---|
MOm | Mean of Maximum Opening | −0.45 |
MOv | Variability 1 of Maximum Opening | 0.32 |
MOSm | Mean of Maximum Speed (opening phase) | −0.57 |
MOSv | Variability 1 of Maximum Speed (opening phase) | 0.36 |
MCSm | Mean of Maximum Speed (closing phase) | −0.58 |
MCSv | Variability 1 of Maximum Speed (closing phase) | 0.40 |
MAm | Mean of Movement Amplitude | −0.44 |
MAv | Variability 1 of Movement Amplitude | 0.38 |
Freq | Principal Frequency of voluntary movement | −0.46 |
Dv | Variability 1 of Movement Duration | 0.44 |
Name | Meaning | Spearman Correlation Coefficient ρ |
---|---|---|
MOSm | Mean of Maximum Speed (opening phase) | −0.61 |
MOSv | Variability 1 of Maximum Speed (opening phase) | 0.42 |
MCSm | Mean of Maximum Speed (closing phase) | −0.58 |
MCSv | Variability 1 of Maximum Speed (closing phase) | 0.56 |
MAm | Mean of Movement Amplitude | −0.57 |
MAv | Variability 1 of Movement Amplitude | 0.34 |
Dv | Variability 1 of Movement Duration | 0.55 |
Name | Meaning | Spearman Correlation Coefficient ρ |
---|---|---|
MRm | Mean of Movement Rotation | −0.30 |
MRv | Variability 1 of Movement Rotation | 0.31 |
MSSm | Mean of Maximum Speed (supination phase) | −0.48 |
MSSv | Variability 1 of Maximum Speed (supination phase) | 0.36 |
MPSm | Mean of Maximum Speed (pronation phase) | −0.44 |
MPSv | Variability 1 of Maximum Speed (pronation phase) | 0.43 |
Freq | Principal Frequency of voluntary movement | −0.43 |
DSv | Variability 1 of Supination Duration | 0.34 |
DPv | Variability 1 of Pronation Duration | 0.35 |
HEALTHY vs. PD | HEALTHY vs. UPDRS | ||||
---|---|---|---|---|---|
Task | Classifier | Leave-One-Out | 10-Fold 1 | Leave-One-Out | 10-Fold 1 |
FT | NB | 91.19 | 91.70 | 59.94 | 59.45 |
LDA | 93.71 | 93.71 | 66.31 | 66.63 | |
MNR | 95.60 | 95.60 | 73.35 | 73.06 | |
SVM | 98.23 | 98.44 | 76.06 | 76.71 | |
KNN | 93.71 | 94.10 | 69.69 | 69.22 | |
OC | NB | 86.67 | 86.16 | 58.19 | 58.84 |
LDA | 88.57 | 88.57 | 61.05 | 61.56 | |
MNR | 90.48 | 91.44 | 65.95 | 66.21 | |
SVM | 90.48 | 90.06 | 65.14 | 65.24 | |
KNN | 89.52 | 90.34 | 59.14 | 59.17 | |
PS | NB | 98.97 | 98.97 | 56.67 | 56.79 |
LDA | 91.75 | 91.75 | 55.67 | 57.10 | |
MNR | 98.97 | 98.70 | 56.79 | 56.51 | |
SVM | 98.97 | 98.97 | 58.73 | 58.87 | |
KNN | 98.97 | 97.94 | 57.82 | 58.25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraris, C.; Nerino, R.; Chimienti, A.; Pettiti, G.; Cau, N.; Cimolin, V.; Azzaro, C.; Albani, G.; Priano, L.; Mauro, A. A Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson’s Disease. Sensors 2018, 18, 3523. https://doi.org/10.3390/s18103523
Ferraris C, Nerino R, Chimienti A, Pettiti G, Cau N, Cimolin V, Azzaro C, Albani G, Priano L, Mauro A. A Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson’s Disease. Sensors. 2018; 18(10):3523. https://doi.org/10.3390/s18103523
Chicago/Turabian StyleFerraris, Claudia, Roberto Nerino, Antonio Chimienti, Giuseppe Pettiti, Nicola Cau, Veronica Cimolin, Corrado Azzaro, Giovanni Albani, Lorenzo Priano, and Alessandro Mauro. 2018. "A Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson’s Disease" Sensors 18, no. 10: 3523. https://doi.org/10.3390/s18103523
APA StyleFerraris, C., Nerino, R., Chimienti, A., Pettiti, G., Cau, N., Cimolin, V., Azzaro, C., Albani, G., Priano, L., & Mauro, A. (2018). A Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson’s Disease. Sensors, 18(10), 3523. https://doi.org/10.3390/s18103523