Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. TiO2 Synthesis
2.2. Characterization
2.3. Photoelectrochemical Tests
3. Results and Discussion
3.1. Synthesis and Characterisation
3.2. Electrochemical Behaviour
3.3. Photo-Electrochemical Tests
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef] [PubMed]
- Holze, R.; Eftekhari, A. Nanostructured materials in electrochemistry. J. Solid State Electrochem. 2009, 13, 1621–1622. [Google Scholar] [CrossRef]
- Si, B.; Song, E. Recent Advances in the Detection of Neurotransmitters. Chemosensors 2018, 6, 1. [Google Scholar] [CrossRef]
- Lavanya, N.; Leonardi, S.G.; Sekar, C.; Ficarra, S.; Galtieri, A.; Tellone, E.; Neri, G. Detection of Catecholamine Neurotransmitters by Nanostructured SnO2-Based Electrochemical Sensors: A Review of Recent Progress. Mini Rev. Org. Chem. 2018, 15, 382–388. [Google Scholar] [CrossRef]
- Venton, B.J.; Wightman, R.M. Psychoanalytical electrochemistry: Dopamine and behaviour. Anal. Chem. 2003, 75, 414 A–421A. [Google Scholar] [CrossRef]
- Jiao, S.; Li, M.; Wang, C.; Chen, D.; Fang, B. Fabrication of Fc-SWNTs modified glassy carbon electrode for selective and sensitive determination of dopamine in the presence of AA and UA. Electrochim. Acta 2007, 52, 5939–5944. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Bonsignore, M.; Lavanya, N.; Sekar, C.; Leonardi, S.G.; Neri, G.; Neri, F. Molybdenum oxide nanoparticles for the sensitive and selective detection of dopamine. J. Electroanal. Chem. 2018, 814, 91–96. [Google Scholar] [CrossRef]
- Thiagarajan, S.; Tsai, T.H.; Chen, S.M. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2009, 24, 2712–2715. [Google Scholar] [CrossRef] [PubMed]
- Peltola, E.; Sainio, S.; Holt, K.B.; Palomäki, T.; Koskinen, J.; Laurila, T. Electrochemical fouling of dopamine and recovery of carbon electrodes. Anal. Chem. 2018, 90, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Soliveri, G.; Pifferi, V.; Panzarasa, G.; Ardizzone, S.; Cappelletti, G.; Meroni, D.; Sparnacci, K.; Falciola, L. Self-cleaning properties in engineered sensors for dopamine electroanalytical detection. Analyst 2015, 140, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Su, Y.; Li, L.; Liu, R.; Lv, Y. Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sens. Actuators B Chem. 2017, 246, 380–388. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Q.; Du, X.; Qian, J.; Mao, H.; Wang, K. Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. Anal. Chim. Acta 2015, 853, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, Y.; Li, J.; Da, P.; Geng, J.; Zheng, G. Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J. Mater. Chem. A 2014, 2, 6153–6157. [Google Scholar] [CrossRef]
- Xin, Y.; Li, Z.; Wu, W.; Fu, B.; Wu, H.; Zhang, Z. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain. Biosens. Bioelectron. 2017, 87, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Ma, H.; Yang, J.; Wu, D.; Zhang, Y.; Du, B.; Fan, D.; Wei, Q. Anatase TiO2 based photoelectrochemical sensor for the sensitive determination of dopamine under visible light irradiation. New J. Chem. 2015, 39, 1483–1487. [Google Scholar] [CrossRef]
- Yotsumoto Neto, S.; Silva Luz, R.; Santos Damos, F. Photoelectroanalytical sensor based on TiO2 nanoparticles/copper tetrasulfonated phthalocyanine for detection of dopamine exploiting light emitting diode irradiation. Electroanalysis 2016, 28, 2087–2092. [Google Scholar] [CrossRef]
- Zhai, C.; Zhu, M.; Ren, F.; Yao, Z.; Du, Y.; Yang, P. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation. J. Hazard Mater. 2013, 263, 291–298. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Li, X.; Xiong, Y.; Zhu, X.; Liu, S. The enhanced PC and PEC oxidation of formic acid in aqueous solution using a Cu-TiO2/ITO film. Chemosphere 2005, 58, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kafi, A.K.M.; Wu, G.; Chen, A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron. 2008, 24, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Macak, J.M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Smooth Anodic TiO2 Nanotubes. Angew. Chem. Int. Ed. 2005, 44, 7463–7465. [Google Scholar] [CrossRef] [PubMed]
- Ampelli, C.; Tavella, F.; Perathoner, S.; Centi, G. Engineering of photoanodes based on ordered TiO2-nanotube arrays in solar photo-electrocatalytic (PECa) cells. Chem. Eng. J. 2017, 320, 352–362. [Google Scholar] [CrossRef]
- Zhao, R.; Xu, M.; Wang, J.; Chen, G. A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochim. Acta 2010, 55, 5647–5651. [Google Scholar] [CrossRef]
- Espid, E.; Taghipour, F. UV-LED Photo-activated Chemical Gas Sensors: A Review. Crit. Rev. Solid State Mater. Sci. 2016, 42, 1–17. [Google Scholar] [CrossRef]
- Ojani, R.; Safshekan, S.; Raoof, J.-B. Photoelectrochemical oxidation of hydrazine on TiO2 modified titanium electrode: Its application for detection of hydrazine. J. Solid State Electrochem. 2014, 18, 779–783. [Google Scholar] [CrossRef]
- Ampelli, C.; Tavella, F.; Genovese, C.; Perathoner, S.; Favaro, M.; Centi, G. Analysis of the factors controlling performances of Au-modified TiO2 nanotube array based photoanode in photo-electrocatalytic (PECa) cells. J. Energy Chem. 2017, 26, 284–294. [Google Scholar] [CrossRef]
- Passalacqua, R.; Ampelli, C.; Perathoner, S.; Centi, G. Anodically Formed TiO2 Thin Films: Evidence for a Multiparameter Dependent Photocurrent-Structure Relationship. Nanosci. Nanotechnol. Lett. 2012, 4, 142–148. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.-L.; Wang, A.-J.; Wang, Y. Probing photon localization effect between titania and photonic crystals on enhanced photocatalytic activity of titania film. Chem. Eng. J. 2016, 284, 305–314. [Google Scholar] [CrossRef]
- Ampelli, C.; Passalacqua, R.; Perathoner, S.; Centi, G.; Su, D.S.; Weinberg, G. Synthesis of TiO2 Thin Films: Relationship between Preparation Conditions and Nanostructure. Top. Catal. 2008, 50, 133–144. [Google Scholar] [CrossRef]
- Baez, V.B.; Pletcher, D. Preparation and characterization of carbon/titanium dioxide surfaces—The reduction of oxygen. J. Electroanal. Chem. 1995, 382, 59–64. [Google Scholar] [CrossRef]
- Lezana, N.; Fernández-Vidal, F.; Berríos, C.; Garrido-Ramírez, E. Electrochemical and photo-electrochemical processes of methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane. J. Chil. Chem. Soc. 2017, 62, 3529–3534. [Google Scholar] [CrossRef]
- Ivanov, S.; Mintsouli, I.; Georgieva, J.; Armyanov, S.; Valova, E.; Kokkinidis, G.; Sotiropoulos, S. Platinized titanium dioxide electrodes for methanol oxidation and photo-oxidation. J. Electrochem. Sci. Eng. 2012, 2, 155–169. [Google Scholar] [CrossRef]
- Xin, Y.; Li, Z.; Wu, W.; Fu, B.; Wub, H.; Zhang, Z. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain. Biosens. Bioelectron. 2017, 87, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Wei Lai, C.; Sreekantan, S. The Photoelectrochemical Response of Various Surface Morphologies of Titanium Anodic Oxide Films. J. Eng. Sci. 2013, 9, 21–30. [Google Scholar]
- Cai, Z.; Rong, M.; Zhao, T.; Zhao, L.; Wang, Y.; Chen, X. Solar-induced photoelectrochemical sensing for dopamine based on TiO2 nanoparticles on g-C3N4 decorated graphene nanosheets. J. Electroanal. Chem. 2015, 759, 32–37. [Google Scholar] [CrossRef]
Electrode | Range (μM) | Light Source | Sensitivity (nA μM−1 cm−2) | Electrode Area (cm2) | Detection Limit (μM) | Ref. |
---|---|---|---|---|---|---|
Graphene–TiO2 | 0.02–105 | 250 W Xe lamp | 2140 | 0.07 | 0.006 | [13] |
TiO2 NTs | 0.001–25 | 300 W Xe lamp | 1340 | -- | 0.00015 | [15] |
TiO2 NPs | 5–200 | 30 W LED | 0.013 | 2.4 | 2 | [16] |
CuTsPc/TiO2 | 4–810 | 20 W LED | 3.7 | 0.8 | 0.5 | [17] |
Graphene-C3N4/TiO2 | 0.1–50 | 150 W Xe lamp | 210 (nA/μM) | -- | 0.02 | [35] |
TiO2 nanopore array | 200–1500 | 120 mW LED | 0.462 | 0.125 | 20 | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavella, F.; Ampelli, C.; Leonardi, S.G.; Neri, G. Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode. Sensors 2018, 18, 3566. https://doi.org/10.3390/s18103566
Tavella F, Ampelli C, Leonardi SG, Neri G. Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode. Sensors. 2018; 18(10):3566. https://doi.org/10.3390/s18103566
Chicago/Turabian StyleTavella, Francesco, Claudio Ampelli, Salvatore Gianluca Leonardi, and Giovanni Neri. 2018. "Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode" Sensors 18, no. 10: 3566. https://doi.org/10.3390/s18103566
APA StyleTavella, F., Ampelli, C., Leonardi, S. G., & Neri, G. (2018). Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode. Sensors, 18(10), 3566. https://doi.org/10.3390/s18103566