A POSHE-Based Optimum Clip-Limit Contrast Enhancement Method for Ultrasonic Logging Images
Abstract
:1. Introduction
2. Related Work
2.1. Histogram Equalization
2.2. POSHE
- Step 1:
- Let us define an image with size M × N.
- Step 2:
- Assign an m × n sub-block at the top left corner. For computational simplicity, the size of the sub-block is selected to be equal to the quotient of the input image size divided by a multiple of two.
- Step 3:
- Perform local histogram equalization for the current sub-block.
- Step 4:
- The sub-block moves from left to right and from top to bottom by the horizontal step size and the vertical step size. Repeat Step 3 until POSHE covers the entire input image plane.
- Step 5:
- After sub-block histogram equalization is completed, because each pixel is obviously histogram equalized more than once, accumulated equalization results on each pixel can be divided by its histogram equalization frequency and then produce each pixel value in the output image array.
3. The Proposed Contrast Enhancement Method
3.1. Clipped Histogram Equalization
3.2. Optimum Clip-Limit Strategies
4. Experimental Results and Discussion
4.1. Subjective Evaluation
4.2. Objective Evaluation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lin, B.; Giurgiutiu, V. Modeling and testing of PZT and PVDF piezoelectric wafer active sensors. Smart Mater. Struct. 2006, 15, 1085. [Google Scholar] [CrossRef]
- Lu, G.; Feng, Q.; Li, Y.; Wang, H.; Song, G. Characterization of ultrasound energy diffusion due to small-size damage on an aluminum plate using piezoceramic transducers. Sensors 2017, 17, 2796. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Wang, T.; Yang, D.; Liu, S.; Shao, J.; Li, Y. A smart washer for bolt looseness monitoring based on piezoelectric active sensing method. Appl. Sci. 2016, 6, 320. [Google Scholar] [CrossRef]
- Xu, K.; Kong, Q.; Chen, S.; Song, G. Early Determination of the Presence of Low Strength Concrete in Reinforced Concrete Beam-Column Joints Using Piezoceramic-Based Transducers. IEEE Sens. J. 2017, 17, 3244–3250. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Du, G.; Song, G. Damage detection of l-shaped concrete filled steel tube (L-CFST) columns under cyclic loading using embedded piezoceramic transducers. Sensors 2018, 18, 2171. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P.; Loh, K.J. A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib. Dig. 2006, 38, 91–130. [Google Scholar] [CrossRef]
- Yang, Y.; Divsholi, B.S.; Soh, C.K. A reusable PZT transducer for monitoring initial hydration and structural health of concrete. Sensors 2010, 10, 5193–5208. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Wang, C.; Wang, B. Structural Health Monitoring (SHM) of Civil Structures. Appl. Sci. 2017, 7, 789. [Google Scholar] [CrossRef]
- Yang, Y.; Annamdas, V.G.M.; Wang, C.; Zhou, Y. Application of multiplexed FBG and PZT impedance sensors for health monitoring of rocks. Sensors 2008, 8, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D.; In, C.W.; Cronin, K.E.; Sohn, H.; Harries, K. Reference-free NDT technique for debonding detection in CFRP-strengthened RC structures. J. Struct. Div. 2007, 133, 1080–1091. [Google Scholar] [CrossRef]
- Mańka, M.; Rosiek, M.; Martowicz, A.; Stepinski, T.; Uhl, T. PZT based tunable Interdigital Transducer for Lamb waves based NDT and SHM. Mech. Syst. Signal. Process. 2016, 78, 71–83. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, G.; Li, H.; Huo, L.; Song, G. A novel time reversal sub-group imaging method with noise suppression for damage detection of plate-like structures. Struct. Control Health Monit. 2018, 25, e2111. [Google Scholar] [CrossRef]
- Luo, M.; Li, W.; Hei, C.; Song, G. Concrete infill monitoring in concrete-filled FRP tubes using a PZT-based ultrasonic time-of-flight method. Sensors 2016, 16, 2083. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Gu, H.; Mo, Y.L.; Hsu, T.T.C.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959. [Google Scholar] [CrossRef]
- Kong, Q.; Robert, R.H.; Silva, P.; Mo, Y.L. Cyclic crack monitoring of a reinforced concrete column under simulated pseudo-dynamic loading using piezoceramic-based smart aggregates. Appl. Sci. 2016, 6, 341. [Google Scholar] [CrossRef]
- Xu, J.; Hao, J.; Li, H.; Luo, M.; Guo, W.; Li, W. Experimental Damage Identification of a Model Reticulated Shell. Appl. Sci. 2017, 7, 362. [Google Scholar] [CrossRef]
- Sun, F.P.; Chaudhry, Z.; Liang, C.; Rogers, C.A. Truss structure integrity identification using PZT sensor-actuator. NDT E Int. 1997, 5, 321. [Google Scholar] [CrossRef]
- Du, G.; Kong, Q.; Zhou, H.; Gu, H. Multiple cracks detection in pipeline using damage index matrix based on piezoceramic transducer-enabled stress wave propagation. Sensors 2017, 17, 1812. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ren, L.; Ho, S.C.; Jia, Z.; Song, G. Gas pipeline leakage detection based on PZT sensors. Smart Mater. Struct. 2017, 26, 025022. [Google Scholar] [CrossRef]
- Du, G.; Kong, Q.; Wu, F.; Ruan, J.; Song, G. An experimental feasibility study of pipeline corrosion pit detection using a piezoceramic time reversal mirror. Smart Mater. Struct. 2016, 25, 037002. [Google Scholar] [CrossRef]
- Venugopal, V.P.; Wang, G. Modeling and analysis of Lamb wave propagation in a beam under lead zirconate titanate actuation and sensing. J. Intell. Mater. Syst. Struct. 2015, 26, 1679–1698. [Google Scholar] [CrossRef]
- Kong, Q.; Hou, S.; Ji, Q.; Mo, Y.L.; Song, G. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates. Smart Mater. Struct. 2013, 22, 085025. [Google Scholar] [CrossRef]
- Tian, Z.; Huo, L.; Gao, W.; Li, H.; Song, G. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers. Smart Mater. Struct. 2017, 26, 105030. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Huo, L.; Li, H.; Song, G. Smart concrete slabs with embedded tubular PZT transducers for damage detection. Smart Mater. Struct. 2018, 27, 025002. [Google Scholar] [CrossRef]
- Lu, G.; Li, Y.; Wang, T.; Xiao, H.; Song, G. A multi-delay-and-sum imaging algorithm for damage detection using piezoceramic transducers. J. Intell. Mater. Syst. Struct. 2017, 28, 1150–1159. [Google Scholar] [CrossRef]
- Lu, G.; Li, Y.; Zhou, M.; Feng, Q.; Song, G. Detecting Damage Size and Shape in a Plate Structure Using PZT Transducer Array. J. Aerosp. Eng. 2018, 31, 04018075. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, W.; Song, G.; Song, Y. An imaging algorithm for damage detection with dispersion compensation using piezoceramic induced lamb waves. Smart Mater. Struct. 2016, 26, 025017. [Google Scholar] [CrossRef]
- Gao, W.; Huo, L.; Li, H.; Song, G. An Embedded Tubular PZT Transducer Based Damage Imaging Method for Two-Dimensional Concrete Structures. IEEE Access 2018, 6, 30100–30109. [Google Scholar] [CrossRef]
- Valente, S.A.; Zibetti, M.V.W.; Pipa, D.R.; Maia, J.M.; Schneider, F.K. An Assessment of Iterative Reconstruction Methods for Sparse Ultrasound Imaging. Sensors 2017, 17, 533. [Google Scholar] [CrossRef] [PubMed]
- Gang, T.; Hu, M.; Bai, X.; Rong, Q. Sensitivity-Improved Ultrasonic Sensor for 3D Imaging of Seismic Physical Model Using a Compact Microcavity. Sensors 2018, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Birchak, J.R.; Linyaev, E.; Robbins, C.A.; Roessler, D.E.; Halliburton Co. Acoustic Transducer for LWD Tool. U.S. Patent 5,644,186, 1 July 1997. [Google Scholar]
- Aron, J.B.; Chang, S.K.; Klasel, D.A.; Lau, T.M.; Schlumberger Technology Corp. Transducer for Sonic Logging-While-Drilling. U.S. Patent 5,753,812, 19 May 1998. [Google Scholar]
- Yogeswaren, E.; PathFinder Energy Services Inc. Acoustic Sensor for Downhole Measurement Tool. U.S. Patent 7,036,363, 2 May 2006. [Google Scholar]
- Massiot, C.; Mcnamara, D.D.; Lewis, B. Processing and analysis of high temperature geothermal acoustic borehole image logs in the Taupo Volcanic zone, New Zealand. Geothermics 2015, 53, 190–201. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, S.; Cao, J.; Li, M.; Pang, X. A review on the applications of image logs in structural analysis and sedimentary characterization. Mar. Pet. Geol. 2018, 95, 139–166. [Google Scholar] [CrossRef]
- Zohreh, M.; Junin, R.; Jeffreys, P. Evaluate the borehole condition to reduce drilling risk and avoid potential well bore damages by using image logs. J. Pet. Sci. Eng. 2014, 122, 318–330. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, H.; Liu, X. Case studies of casing inspection with multi-functional ultrasonic imaging logging tool. J. Acoust. Soc. Am. 2013, 133, 3545. [Google Scholar] [CrossRef]
- Liang, M.; Peng, S.; Du, W.; Lu, Y. Tectonic stress estimation from ultrasonic borehole image logs in a coal bed methane well, northeastern Qinshui Basin, China. J. Nat. Gas Sci. Eng. 2018, 52, 44–58. [Google Scholar] [CrossRef]
- Xiao, K.; Zou, C.; Xiang, B.; Yue, X.; Zhou, X.; Li, J.; Zhao, B. Log response of ultrasonic imaging and its significance for deep mineral prospecting of scientific drilling borehole-2 in Nanling district, China. J. Geophys. Eng. 2014, 11, 055003. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, X.; Xiao, S.; Zhang, C.; Zhang, C.; Zhang, Z. Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log. Acta Geophys. 2018, 66, 1–11. [Google Scholar] [CrossRef]
- Fu, Q.; Celenk, M.; Wu, A. An improved algorithm based on CLAHE for ultrasonic well logging image enhancement. Clust. Comput. 2018, 1–10. [Google Scholar] [CrossRef]
- Tu, J.; Yu, H.; Li, C.; Zou, W. Study of Histogram Equalization for Ultrasonic Logging Well Image. Video Eng. 2011, 35, 113–114. [Google Scholar]
- Jeong, C.K.; Baek, C.; Kingon, A.I.; Park, K.I.; Kim, S.H. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 2018, 14, e1704022. [Google Scholar] [CrossRef] [PubMed]
- Che, X.-H.; Qiao, W.-X.; Ju, X.-D.; Wang, R.-J. Azimuthal cement evaluation with an acoustic phased-arc array transmitter: Numerical simulations and field tests. Appl. Geophys. 2016, 13, 194–202. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, C.; Chen, P.; Kang, C. An Efficient Contrast Enhancement Method for Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1715–1719. [Google Scholar] [CrossRef]
- Lai, Y.R.; Tsai, P.C.; Yao, C.Y.; Ruan, S.J. Improved local histogram equalization with gradient-based weighting process for edge preservation. Multimed. Tools Appl. 2017, 76, 1585–1613. [Google Scholar] [CrossRef]
- Ibrahim, H.; Kong, N.S.P. Brightness Preserving Dynamic Histogram Equalization for Image Contrast Enhancement. IEEE Trans. Consum. Electron. 2007, 53, 1752–1758. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, W.; Wang, J.; Sun, Z. Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Process. 2015, 9, 908–915. [Google Scholar]
- Chiu, C.C.; Ting, C.C. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization. Sensors 2016, 16, 936. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.T. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 1997, 43, 1–8. [Google Scholar]
- Chen, S.D.; Ramli, A.R. Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 2003, 49, 1301–1309. [Google Scholar] [CrossRef]
- Chen, S.D.; Ramli, A.R. Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 2004, 49, 1310–1319. [Google Scholar] [CrossRef]
- Singh, K.; Kapoor, R. Image enhancement using exposure based sub image histogram equalization. Pattern Recognit. Lett. 2014, 36, 10–14. [Google Scholar] [CrossRef]
- Singh, K.; Kapoor, R.; Sinha, S.K. Enhancement of low exposure images via recursive histogram equalization algorithms. Optik 2015, 126, 2619–2625. [Google Scholar] [CrossRef]
- Parihar, A.S.; Verma, O.P. Contrast enhancement using entropy-based dynamic sub-histogram equalisation. IET Image Process. 2017, 10, 799–808. [Google Scholar] [CrossRef]
- Abdullah-Al-Wadud, M.; Kabir, M.H.; Dewan, M.A.A.; Chae, O. A Dynamic Histogram Equalization for Image Contrast Enhancement. IEEE Trans. Consum. Electron. 2007, 53, 593–600. [Google Scholar] [CrossRef]
- Huang, S.C.; Cheng, F.C.; Chiu, Y.S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 2013, 22, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Arici, T.; Dikbas, S.; Altunbasak, Y. A Histogram Modification Framework and Its Application for Image Contrast Enhancement. IEEE Trans. Image Process. 2009, 18, 1921–1935. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Huang, L. Brightness preserving image enhancement based on a gradient and intensity histogram. J. Electron. Imaging 2015, 24, 053006. [Google Scholar]
- Kong, N.S.P.; Ibrahim, H. Multiple layers block overlapped histogram equalization for local content emphasis. Comput. Electr. Eng. 2011, 37, 631–643. [Google Scholar] [CrossRef]
- Kim, T.K.; Paik, J.K.; Kang, B.S. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans. Consum. Electron. 1998, 44, 82–87. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Publishing House of Electronics Industry: Beijing, China, 2007; pp. 88–108. [Google Scholar]
- Kim, J.Y.; Kim, L.S.; Hwang, S.H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 2001, 11, 475–484. [Google Scholar] [Green Version]
- Reza, A.M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization; Graphics Gems IV; Academic Press Professional Inc.: San Diego, CA, USA, 1994; pp. 474–485. [Google Scholar]
- Yan, J.P.; Shou, X.Y.; Shao, Z.P.; Yao, S.X.; Zhao, Z.M. The Method of Image Dynamic Intensify and Morphing in Imaging Log. Well Logging Technol. 2006, 30, 364–366. [Google Scholar]
- Wang, X.; Peng, T.; Lei, G.; Zhang, J.; Zhao, X. On the Method of XRMI Dynamic Enhancement and Full Borehole Imaging and Its Application. Well Logging Technol. 2015, 39, 432–437. [Google Scholar]
- Jenifer, S.; Parasuraman, S.; Kadirvelu, A. Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Appl. Soft Comput. 2016, 42, 167–177. [Google Scholar] [CrossRef]
- Chen, H.O.; Kong, N.S.P.; Ibrahim, H. Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans. Consum. Electron. 2010, 55, 2072–2080. [Google Scholar]
- Al-Ameen, Z.; Sulong, G.; Rehman, A.; Al-Dhelaan, A.; Saba, T.; Al-Rodhaan, M. An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization. Eurasip J. Adv. Signal Process. 2015, 1, 1–12. [Google Scholar] [CrossRef]
- Jiao, L.; Sun, Z.; Sha, A. Improvement of Image Contrast with Local Adaptation. In Proceedings of the 2010 Second International Conference on Multimedia and Information Technology, Kaifeng, China, 24–25 April 2010; pp. 51–54. [Google Scholar]
- Liu, Y.F.; Guo, J.M.; Lai, B.S. Parametric-Oriented Fitting for Local Contrast Enhancement. Inform. Sci. 2016, 370–371, 323–342. [Google Scholar] [CrossRef]
- Gupta, B.; Agarwal, T.K. Linearly quantile separated weighted dynamic histogram equalization for contrast enhancement. Comput. Electr. Eng. 2017, 62, 360–374. [Google Scholar] [CrossRef]
- Joseph, J.; Jayaraman, S.; Periyasamy, R.; Simi, V.R. An objective method to identify optimum clip-limit and histogram specification of contrast limited adaptive histogram equalization for MR images. Biocybern. Biomed. Eng. 2017, 37, 489–497. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Z. Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization. Infrared Phys. Technol. 2017, 86, 59–65. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
Methods | Objective Indexes | ||||
---|---|---|---|---|---|
PMGSIM | PSNR | IE | AMBE | LC | |
HE | 41.1477 | 7.8129 | 5.2915 | 91.3723 | 0.3517 |
BOHE | 32.7773 | 7.1055 | 7.9546 | 97.4517 | 0.5681 |
POSHE | 41.5468 | 7.7988 | 7.9259 | 91.5251 | 0.6086 |
MLBOHE | 45.2901 | 15.7386 | 6.9873 | 38.0596 | 0.1769 |
BBHE | 55.4418 | 14.5983 | 5.9073 | 25.1141 | 0.3563 |
RMSHE | 52.2859 | 25.1331 | 5.9667 | 1.7287 | 0.1913 |
CLAHE-PL | 60.1273 | 13.6930 | 7.4505 | 41.4485 | 0.2067 |
POSHEOC | 62.5286 | 16.6169 | 7.2052 | 27.7857 | 0.2773 |
Methods | Objective Indexes | ||||
---|---|---|---|---|---|
PMGSIM | PSNR | IE | AMBE | LC | |
HE | 52.4388 | 13.7409 | 5.8441 | 31.0693 | 0.2991 |
BOHE | 48.6238 | 10.8948 | 7.9774 | 54.0931 | 0.5068 |
POSHE | 54.3196 | 12.7994 | 7.9665 | 38.2192 | 0.5249 |
MLBOHE | 40.7913 | 16.7165 | 7.2906 | 34.4128 | 0.1624 |
BBHE | 52.9611 | 14.4309 | 6.8055 | 24.2409 | 0.4237 |
RMSHE | 47.6993 | 24.7405 | 6.7605 | 2.7983 | 0.2098 |
CLAHE-PL | 58.4960 | 14.5198 | 7.7645 | 35.4124 | 0.2783 |
POSHEOC | 61.1664 | 17.2683 | 7.6481 | 19.6878 | 0.3606 |
Methods | Objective Indexes | ||||
---|---|---|---|---|---|
PMGSIM | PSNR | IE | AMBE | LC | |
HE | 49.2776 | 17.8113 | 5.9706 | 8.2204 | 0.2409 |
BOHE | 53.4988 | 14.5454 | 7.9473 | 29.0144 | 0.4281 |
POSHE | 54.6502 | 16.6845 | 7.9561 | 8.4551 | 0.2990 |
MLBOHE | 40.1781 | 19.3844 | 7.5268 | 24.8180 | 0.1898 |
BBHE | 49.7495 | 18.2670 | 7.2280 | 4.1289 | 0.3378 |
RMSHE | 44.0206 | 29.3174 | 7.2733 | 0.7827 | 0.2234 |
CLAHE-PL | 56.4173 | 16.8092 | 7.8462 | 16.0812 | 0.2857 |
POSHEOC | 58.2492 | 18.5768 | 7.6870 | 2.3548 | 0.3450 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Zhang, Z.; Celenk, M.; Wu, A. A POSHE-Based Optimum Clip-Limit Contrast Enhancement Method for Ultrasonic Logging Images. Sensors 2018, 18, 3954. https://doi.org/10.3390/s18113954
Fu Q, Zhang Z, Celenk M, Wu A. A POSHE-Based Optimum Clip-Limit Contrast Enhancement Method for Ultrasonic Logging Images. Sensors. 2018; 18(11):3954. https://doi.org/10.3390/s18113954
Chicago/Turabian StyleFu, Qingqing, Zhengbing Zhang, Mehmet Celenk, and Aiping Wu. 2018. "A POSHE-Based Optimum Clip-Limit Contrast Enhancement Method for Ultrasonic Logging Images" Sensors 18, no. 11: 3954. https://doi.org/10.3390/s18113954
APA StyleFu, Q., Zhang, Z., Celenk, M., & Wu, A. (2018). A POSHE-Based Optimum Clip-Limit Contrast Enhancement Method for Ultrasonic Logging Images. Sensors, 18(11), 3954. https://doi.org/10.3390/s18113954