Retrieving the Diurnal FPAR of a Maize Canopy from the Jointing Stage to the Tasseling Stage with Vegetation Indices under Different Water Stresses and Light Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Scheme
2.2. Canopy Hyperspectral Reflectance Data
2.3. Canopy FPAR
2.4. Soil Moisture
2.5. Effective Leaf Area Index
2.6. Hyperspectral VIs
2.7. Data Fitting
3. Results
3.1. Soil Moisture and Effective LAI during Canopy Development
3.2. FPAR and NDVI under Different Conditions
3.3. Retrieving the FPAR with VIs under Different Conditions
3.3.1. Effect of Light Conditions on the Model Determination
3.3.2. Effect of a Drought on Model Accuracy
3.3.3. Comparison of the Prediction Results of the Different Models
4. Discussions
5. Conclusions
- The influence of the illumination change on the effect of the FPAR-VIs models was not significant. The maximum coefficients of determination (R2) of the FPAR-VIs models generated by the sunny nondrought data, the cloudy nondrought data, and all of the nondrought data were 0.895, 0.88, and 0.828, respectively. The VIs (including NDVI, GNDVI, SR705, mSR2, NDVI705, and EVI) that were related to the canopy structure had a higher estimation accuracy (R2 > 0.8) than the other VIs that were related to the soil adjustment, chlorophyll, and physiology. The estimation accuracies of the GNDVI and some red-edge VIs (including NDVI705, SR705, and mSR2) were higher than those of the NDVI.
- Drought greatly reduced the accuracy of the FPAR-VI models. When we compared the quadratic VI-FPAR models under drought and normal conditions in the maize canopy, the maximum R2 value for the quadratic FPAR-VI models built using all of the data (including the drought data) was only 0.590. The maximum R2 value was 0.828 for the quadratic VI-FPAR models after eliminating the drought data. When we built the regression models based on only the drought data, the EVI had a better performance in estimating the diurnal canopy FPAR than the other VIs that were related to the canopy structure.
- The quadratic models for the VIs were suitable for the prediction of the FPAR under nondrought conditions. No quadratic models of VIs could predict the characteristics of a sudden sharp decrease in the FPAR at noon under drought stress. Further research is required to develop a power model (e.g., a higher-order polynomial model) between the FPAR and the VIs to predict the diurnal dynamics of the FPAR under drought stress.
Author Contributions
Funding
Conflicts of Interest
References
- Monteith, J.L.; Moss, C.J. Climate and the Efficiency of Crop Production in Britain. Philos. Trans. R. Soc. Lond. 1977, 281, 277–294. [Google Scholar] [CrossRef]
- Rahman, M.M.; Stanley, J.N.; Lamb, D.W.; Trotter, M.G. Methodology for measuring fAPAR in crops using a combination of active optical and linear irradiance sensors: A case study in Triticale (X Triticosecale Wittmack). Precis. Agric. 2014. [Google Scholar] [CrossRef]
- Hanan, N.P.; Burba, G.; Verma, S.B.; Berry, J.A.; Suyker, A.; Walter-Shwa, E.A. Inversion of net ecosystem CO2 flux measurements for estimation of canopy PAR absorption. Glob. Chang. Biol. 2002, 8, 563–574. [Google Scholar] [CrossRef]
- Gallo, K.P.; Daughtry, C.S.T. Techniques for measuring intercepted and absorbed photosynthetically active radiation in corn canopies. Agron. J. 1986, 78, 752–756. [Google Scholar] [CrossRef]
- Shabanov, N.V.; Wang, Y.; Buermann, W.; Dong, J.; Hoffman, S.; Smith, G.R.; Tian, Y.; Knyazikhin, Y.; Myneni, R.B. Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests. Remote Sens. Environ. 2003, 85, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Gobron, N.; Pinty, B.; Taberner, M.; Melin, F.; Widlowski, J.-L.; Verstraete, M.M. Monitoring FAPAR over land surfaces with remote sensing data. In Remote Sensing for Agriculture, Ecosystems, and Hydrology V, Proceedings of the Remote Sensing, Barcelona, Spain, 8–12 September 2003; SPIE: Bellingham, WA, USA, 2003; Volume 5232, pp. 237–244. [Google Scholar]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAI × Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Meng, J.; Wu, B. Overview on Methods of Deriving Fraction of Absorbed Photosynthetically Active Radiation (FPAR) Using Remote Sensing. Acta Ecol. Sin. 2012, 32, 7190–7201. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Huemmrich, K.F. Relationship between Fraction of Radiation Absorbed by Photosynthesizing Maize and Soybean Canopies and NDVI from Remotely Sensed Data Taken at Close Range and from MODIS 250m Resolution Data. Remote Sens. Environ. 2014, 147, 108–120. [Google Scholar] [CrossRef]
- Huemmrich, K.F.; Goward, S.N. Vegetation Canopy PAR Absorptance and NDVI: An Assessment for Ten Tree Species with the SAIL Model. Remote Sens. Environ. 1997, 61, 254–269. [Google Scholar] [CrossRef]
- Pinty, B.; Lavergne, T.; Widlowski, J.L.; Gobron, N.; Verstraete, M.M. On the Need to Observe Vegetation Canopies in the Near-Infrared to Estimate Visible Light Absorption. Remote Sens. Environ. 2009, 113, 10–23. [Google Scholar] [CrossRef]
- Tan, C.; Samanta, A.; Jin, X.; Tong, L.; Ma, C.; Guo, W.; Knyazikhin, Y.; Myneni, R.B. Using Hyperspectral Vegetation Indices to Estimate the Fraction of Photosynthetically Active Radiation Absorbed by Corn Canopies. Int. J. Remote Sens. 2013, 34, 8789–8802. [Google Scholar] [CrossRef]
- Goward, S.N.; Huemmrich, K.F. Vegetation Canopy PAR Absorptance and the Normalized Difference Vegetation Index: An Assessment Using the SAIL Model. Remote Sens. Environ. 1992, 39, 119–140. [Google Scholar] [CrossRef]
- Ridao, E.; Conde, J.R.; Mínguez, M.I. Estimating fAPAR from Nine Vegetation Indices for Irrigated and Nonirrigated Faba Bean and Semileafless Pea Canopies. Remote Sens. Environ. 1998, 66, 87–100. [Google Scholar] [CrossRef]
- Epiphanio, J.C.N.; Huete, A.R. Dependence of NDVI and SAVI on Sun/Sensor Geometry and Its Effect on fAPAR Relationships in Alfalfa. Remote Sens. Environ. 1995, 51, 351–360. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Goel, N.S.; Qin, W. Influences of Canopy Architecture on Relationships between Various Vegetation Indices and LAI and FPAR: A Computer Simulation. Remote Sens. Rev. 1994, 10, 309–347. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A. New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Chen, X.; Meng, J.; Wu, B.; Zhu, J.; Du, X.; Zhang, F.; Niu, L. Monitoring Corn FPAR Based on HJ-1 CCD. Trans. Chin. Soc. Agric. Eng. 2010, 26, 241–245. [Google Scholar]
- Cao, R.; Shen, M.; Chen, J.; Tang, Y. A Simple Method to Simulate Diurnal Courses of PAR Absorbed by Grassy Canopy. Ecol. Indic. 2014, 46, 129–137. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Z.; Zhao, L.; Zhao, H.; Ren, S. Diurnal Response of Sun-Induced Fluorescence and PRI to Water Stress in Maize Using a Near-Surface Remote Sensing Platform. Remote Sens. 2018, 10, 1510. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Z.; Xu, S.; Zhang, W.; Wu, J. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies. Sensors 2016, 16, 775. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Han, W.; Fu, L.; Li, C.; Song, J.; Zhou, H.; Bo, Y.; Wang, J. LAINet—A Wireless Sensor Network for Coniferous Forest Leaf Area Index Measurement: Design, Algorithm and Validation. Comput. Electron. Agric. 2014, 108, 200–208. [Google Scholar] [CrossRef]
- Black, C.A. Methods of Soil Analysis: Part I Physical and Mineralogical Properties; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Zhao, T.H.; Shen, X.Y.; Yang, D.G.; Ma, X.F. Effects on Chlorophyll Content and Photosynthetic Rate of Maize Leaves under Water Stress and Rewatering. Rain Fed Crops 2003, 23, 33–35. [Google Scholar]
- Garrigues, S.; Shabanov, N.V.; Swanson, K.; Morisette, J.T.; Baret, F.; Myneni, R.B. Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR; digital hemispherical photography over croplands. Agric. For. Meteorol. 2008, 148, 1193–1209. [Google Scholar] [CrossRef]
- Norman, J.M.; Jarvis, P.G. Erratum: Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.). V. Radiation penetration theory and a test case. J. Appl. Ecol. 1975, 12, 792–804. [Google Scholar] [CrossRef]
- Dong, T.; Meng, J.; Shang, J.; Liu, J.; Wu, B. Evaluation of Chlorophyll-Related Vegetation Indices Using Simulated Sentinel-2 Data for Estimation of Crop Fraction of Absorbed Photosynthetically Active Radiation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4049–4059. [Google Scholar] [CrossRef]
- Jin, X.L.; Li, S.K.; Wang, K.R.; Xiao, C.H.; Wang, F.-Y.; Chen, B.; Chen, J.L.; Lu, Y.L.; Diao, W.Y. Estimating Cotton FPAR Based on the Different Vegetation Indexes. Cotton Sci. 2011, 23, 447–453. [Google Scholar]
- Yang, F.; Zhu, Y.; Zhang, J.; Yao, Z. Estimating Fraction of Photosynthetically Active Radiation of Corn with Vegetation Indices and Neural Network from Hyperspectral Data. Chin. Geogr. Sci. 2012, 22, 63–74. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar]
- Luo, S. Correlation Analysis on Drought Resistance and Identification Indexes of Maize. Agric. Res. Arid. Areas 1990, 3, 72–78. [Google Scholar]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. Atmos. 2002, 107, ACL 2-1–ACL 2-23. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D.; Berry, S.L.; Noble, I.R. On the Direct Effect of Clouds and Atmospheric Particles on the Productivity and Structure of Vegetation. Oecologia 2001, 129, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zheng, N.; Quan, T.; Wenjiang, H. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Remote Estimation of Crop Chlorophyll Content Using Spectral Indices Derived from Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 423–437. [Google Scholar] [CrossRef]
Name | Index | Formulation |
---|---|---|
Re-normalized difference vegetation index | RDVI | (R800 − R670)/() |
Enhanced vegetation index | EVI | 2.5 × (R800 − R690)/(R800 + 6.0 × R690 − 7.5 × R490) |
Green normalized difference vegetation index | GNDVI | (R800 − R550)/(R800 + R550) |
Modified soil-adjusted vegetation index | MSAVI | (2 × R800 + 1 − )/2 |
Normalized difference vegetation index | NDVI | (R800 − R670)/(R800 + R670) |
Red-edge simple ratio | SR705 | R750/R705 |
Modified simple ratio 2 | mSR2 | (R750/R705 − 1)/() |
Red-edge normalized difference vegetation index | NDVI705 | (R750 − R705)/(R750 + R705) |
Optimal soil-adjusted vegetation index | OSAVI | (1 + 0.16) × (R800 − R670)/(R800 + R670 + 0.16) |
Red-edge re-normalized difference vegetation index | RDVI705 | (R800 − R705)/() |
Red-edge transformed chlorophyll absorption in reflectance index | TCARI705 | 3 × [(R750 − R705) − 0.2 × (R750 − R550) × (R750/R705)] |
Modified chlorophyll absorption in reflectance index | MCARI | ((R700 − R670) − 0.2 × (R700 − R550)) × (R700/R670) |
Photochemical reflectance index | PRI | (R531 − R570)/(R531 + R570) |
Depth (cm) | 16 July | 30 July | 1 August | |||
---|---|---|---|---|---|---|
WMC | RMC | WMC | RMC | WMC | RMC | |
0~5 | 14.3 | 58.23% | 3.0 | 36.92% | 14.4 | 56.83% |
5~10 | 13.7 | 6.2 | 14.1 | |||
10~20 | 12.7 | 8.9 | 14.6 | |||
20~30 | 10.2 | 9.1 | 8.3 | |||
30~40 | 15.3 | 14.7 | 13.1 | |||
40~50 | 16.7 | 16.5 | 15.4 | |||
50~60 | 17.3 | 69.34% | 17.0 | 69.02% | 14.4 | 62.63% |
60~70 | 15.9 | 16.1 | 13.8 | |||
70~80 | 15.1 | 15.0 | 13.5 | |||
80~90 | 14.2 | 13.8 | 13.9 | |||
90~100 | 15.2 | 15.6 | 14.3 |
Date | Effective LAI | Weather | Date | Effective LAI | Weather |
---|---|---|---|---|---|
18 July 2017 | 2.65 | Sunny | 29 July 2017 | 2.08 | Sunny |
19 July 2017 | 2.4 | Sunny | 30 July 2017 | 2.12 | Sunny |
20 July 2017 | 2.21 | Cloudy | 31 July 2017 | 2.56 | Sunny |
27 July 2017 | 2.46 | Cloudy | 1 August 2017 | 3.31 | Sunny |
28 July 2017 | 2.28 | Cloudy | 3 August, 2017 | 2.99 | Sunny |
Cloudy Nondrought Days | Sunny Nondrought Days | ||||||
---|---|---|---|---|---|---|---|
VIs | Formula | R2 | RMSE | VIs | Formula | R2 | RMSE |
GNDVI | y = 35.3025x2 − 54.0546x + 21.4547 | 0.880 | 0.014 | mSR2 | y = −0.0506x2 + 0.5376x − 0.0347 | 0.895 | 0.015 |
SR705 | y = 0.0227x2 − 0.2325x + 1.3599 | 0.873 | 0.014 | SR705 | y = −0.0073x2 + 0.1723x + 0.0288 | 0.895 | 0.014 |
mSR2 | y = 0.4326x2 − 1.4608x + 1.9994 | 0.872 | 0.014 | GNDVI | y = −6.435x2 + 12.8143x − 5.301 | 0.889 | 0.015 |
NDVI705 | y = 16.9178x2 − 22.9836x + 8.5701 | 0.867 | 0.014 | NDVI | y = 23.2133X2 − 39.6909x + 17.6786 | 0.889 | 0.015 |
NDVI | y = 24.69x2 + −43.4435x + 19.8771 | 0.844 | 0.016 | NDVI705 | y = 6.0087x2 − 6.5581x + 2.4183 | 0.888 | 0.015 |
EVI | y = 2.4251x2 − 9.9697x + 11.0135 | 0.833 | 0.016 | EVI | y = 2.2449x2 − 8.8946x + 9.5286 | 0.857 | 0.017 |
TCARI705 | y = 0.0033x2 − 0.0244x + 0.8056 | 0.799 | 0.018 | TCARI705 | y = −0.0022x2 + 0.0618x + 0.4854 | 0.626 | 0.028 |
MSAVI | y = 6.5224x2 − 10.4731x + 4.9721 | 0.789 | 0.018 | MSAVI | y = 2.0351x2 − 2.4975x + 1.4337 | 0.611 | 0.028 |
OSAVI | y = 9.2741x2 − 14.9208x + 6.7686 | 0.771 | 0.019 | OSAVI | y = −1.8846x2 + 4.5102x − 1.6842 | 0.568 | 0.030 |
RDVI705 | y = 3.7319x2 − 4.1813x + 1.9315 | 0.765 | 0.019 | RDVI705 | y = −2.6621x2 + 4.2621x − 0.8434 | 0.473 | 0.033 |
PRI | y = 51.7959x2 + 1.2097x + 0.775 | 0.756 | 0.020 | RDVI | y = −3.3692x2 + 5.7419x − 1.6118 | 0.384 | 0.036 |
RDVI | y = 3.0198x2 − 3.9242x + 2.0366 | 0.713 | 0.021 | PRI | y = −40.9556x2 + 3.5204x + 0.7674 | 0.363 | 0.036 |
MCARI | y = 1.11x2 + 1.7204x + 0.6741 | 0.595 | 0.025 | MCARI | y = −73.7611x2 + 13.8129x + 0.1759 | 0.360 | 0.036 |
18 July to 3 August (All Days) | 18 July to 3 August (Nondrought Days) | 18 July to 3 August (Drought Days) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VIs | Formula | R2 | RMSE | VIs | Formula | R2 | RMSE | VIs | Formula | R2 | RMSE |
GNDVI | y = 4.9269x2 − 6.1141x + 2.5617 | 0.590 | 0.036 | GNDVI | y = 10.201x2 − 13.8935x + 5.4054 | 0.828 | 0.018 | EVI | y = −0.3955x2 + 1.833x − 1.2591 | 0.685 | 0.044 |
SR705 | y = 0.0034x2 + 0.0038x + 0.658 | 0.549 | 0.038 | NDVI705 | y = 7.51x2 − 9.189x + 3.5267 | 0.813 | 0.018 | NDVI | y = −7.5738x2 + 14.2627x − 5.8525 | 0.654 | 0.046 |
mSR2 | y = 0.073x2 − 0.0915x + 0.7175 | 0.547 | 0.038 | NDVI | y = 24.4468x2 − 42.6451x + 19.3503 | 0.811 | 0.019 | GNDVI | y = −12.0055x2 + 19.859x − 7.3489 | 0.653 | 0.046 |
NDVI705 | y = 2.7775x2 − 2.8914x + 1.4561 | 0.536 | 0.039 | mSR2 | y = 0.0852x2 − 0.0673x + 0.6179 | 0.807 | 0.019 | NDVI705 | y = −4.2147x2 + 6.4723x − 1.6216 | 0.645 | 0.046 |
EVI | y = 0.281x2 − 0.8641x + 1.3689 | 0.500 | 0.040 | SR705 | y = 0.0011x2 + 0.0483x + 0.4642 | 0.805 | 0.019 | mSR2 | y = −0.1857x2 + 0.8028x − 0.0022 | 0.621 | 0.048 |
NDVI | y = 3.8763x2 − 5.7719x + 2.8513 | 0.495 | 0.040 | EVI | y = 2.6888x2 − 11.011x + 12.0306 | 0.790 | 0.019 | SR705 | y = −0.0129x2 + 0.1845x + 0.2076 | 0.602 | 0.049 |
TCARI705 | y = 0.0006x2 + 0.0124x + 0.7002 | 0.427 | 0.043 | TCARI705 | y = 0.0007x2 + 0.0159x + 0.6604 | 0.662 | 0.025 | PRI | y = −34.9698x2 + 0.8984x + 0.8607 | 0.580 | 0.050 |
MSAVI | y = 1.7611x2 − 2.3618x + 1.5346 | 0.398 | 0.044 | MSAVI | y = 5.0591x2 − 7.8632x + 3.8112 | 0.658 | 0.025 | OSAVI | y = −5.0779x2 + 8.9373x − 3.0722 | 0.522 | 0.054 |
OSAVI | y = 2.0062x2 − 2.6163x + 1.5778 | 0.395 | 0.044 | OSAVI | y = 5.6676x2 − 8.6318x + 4.0299 | 0.624 | 0.026 | TCARI705 | y = −0.0037x2 + 0.0641x + 0.595 | 0.481 | 0.057 |
RDVI705 | y = 0.8962x2 − 0.5841x + 0.8075 | 0.378 | 0.045 | RDVI705 | y = 0.6643x2 − 0.1069x + 0.586 | 0.581 | 0.028 | MSAVI | y = −1.785x2 + 3.2967x − 0.663 | 0.461 | 0.057 |
RDVI | y = 0.8471x2 − 0.7532x + 0.8937 | 0.325 | 0.047 | PRI | y = 42.5846x2 + 1.5045x + 0.7736 | 0.506 | 0.030 | RDVI705 | y = −2.8878x2 + 4.0519x − 0.5601 | 0.459 | 0.058 |
PRI | y = 6.8559x2 + 1.5202x + 0.7968 | 0.322 | 0.047 | RDVI | y = 0.6001x2 − 0.2575x + 0.6511 | 0.500 | 0.030 | RDVI | y = −2.5379x2 + 4.0916x − 0.7887 | 0.410 | 0.060 |
MCARI | y = 5.9394x2 + 0.6518x + 0.7253 | 0.216 | 0.050 | MCARI | y = 4.0202x2 + 1.1067x + 0.693 | 0.375 | 0.034 | MCARI | y = −26.3964x2 + 5.7026x + 0.5679 | 0.242 | 0.068 |
All-GNDVI | ND-GNDVI | D-EVI | CND-GNDVI | |
---|---|---|---|---|
20 July | 0.033 | 0.020 | 0.085 | 0.017 |
30 July | 0.063 | 0.075 | 0.049 | 0.134 |
31 July | 0.031 | 0.034 | 0.034 | 0.044 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Liu, Z.; Xu, S.; He, X.; Ni, Z.; Zhao, H.; Ren, S. Retrieving the Diurnal FPAR of a Maize Canopy from the Jointing Stage to the Tasseling Stage with Vegetation Indices under Different Water Stresses and Light Conditions. Sensors 2018, 18, 3965. https://doi.org/10.3390/s18113965
Zhao L, Liu Z, Xu S, He X, Ni Z, Zhao H, Ren S. Retrieving the Diurnal FPAR of a Maize Canopy from the Jointing Stage to the Tasseling Stage with Vegetation Indices under Different Water Stresses and Light Conditions. Sensors. 2018; 18(11):3965. https://doi.org/10.3390/s18113965
Chicago/Turabian StyleZhao, Liang, Zhigang Liu, Shan Xu, Xue He, Zhuoya Ni, Huarong Zhao, and Sanxue Ren. 2018. "Retrieving the Diurnal FPAR of a Maize Canopy from the Jointing Stage to the Tasseling Stage with Vegetation Indices under Different Water Stresses and Light Conditions" Sensors 18, no. 11: 3965. https://doi.org/10.3390/s18113965
APA StyleZhao, L., Liu, Z., Xu, S., He, X., Ni, Z., Zhao, H., & Ren, S. (2018). Retrieving the Diurnal FPAR of a Maize Canopy from the Jointing Stage to the Tasseling Stage with Vegetation Indices under Different Water Stresses and Light Conditions. Sensors, 18(11), 3965. https://doi.org/10.3390/s18113965