Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Baseline Methods
3.2. Adaptive Instance Selection
4. Experiments and Results
4.1. Datasets
4.1.1. Public Dataset
4.1.2. Collected Dataset
4.2. Experimental Setup
- Scenario 1 (Dataset A): Batch 1 for initial training, Batch 2–10 for online testing.
- Scenario 2 (Dataset A): Batch 2 for initial training, Batch 3–10 for online testing.
- Scenario 3 (Dataset A): Batch 3 for initial training, Batch 4–10 for online testing.
- Scenario 4 (Dataset B): Batch 1 for initial training, Batch 2 and 3 for online testing.
4.3. Results and Discussion
4.3.1. Performance Evaluation of Paradigms
4.3.2. Effect of Instance Number
4.3.3. Distribution of Labeled Instances
4.3.4. Values of Labelling Efficiency Index (LEI)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lidia, E.; Laura, C.; Selena, S. Electronic Nose Testing Procedure for the Definition of Minimum Performance Requirements for Environmental Odor Monitoring. Sensors 2016, 16, 1548. [Google Scholar] [CrossRef]
- Wu, H.; Yue, T.; Yuan, Y. Authenticity Tracing of Apples According to Variety and Geographical Origin Based on Electronic Nose and Electronic Tongue. Food Anal. Methods 2018, 11, 522–532. [Google Scholar] [CrossRef]
- Pineda, D.M.; Pérez, J.C. SENose: An under U$50 electronic nose for the monitoring of soil gas emissions. Comput. Electron. Agric. 2017, 133, 15–21. [Google Scholar] [CrossRef]
- Goor, R.V.D.; Hooren, M.V.; Dingemans, A.M.; Kremer, B.; Kross, K. Training and validating a portable electronic nose for lung cancer screening. J. Thorac. Oncol. 2018, 13, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18–19, 210–211. [Google Scholar] [CrossRef]
- Capone, S.; Epifani, M.; Francioso, L.; Kaciulis, S.; Mezzi, A.; Siciliano, P.; Taurino, A.M. Influence of electrodes ageing on the properties of the gas sensors based on SnO2. Sens. Actuators B Chem. 2006, 115, 396–402. [Google Scholar] [CrossRef]
- Perera, A.; Papamichail, N.; Barsan, N.; Weimar, U.; Marco, S. On-line novelty detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions. IEEE Sens. J. 2006, 6, 770–783. [Google Scholar] [CrossRef]
- Ziyatdinov, A.; Marco, S.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators B Chem. 2011, 146, 460–465. [Google Scholar] [CrossRef]
- Ziyatdinov, A.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Common Principal Component Analysis for Drift Compensation of Gas Sensor Array Data. In Proceedings of the Aip Conference, Rhodes, Greece, 29 September–4 October 2009; pp. 566–569. [Google Scholar]
- Laref, R.; Ahmadou, D.; Losson, E.; Siadat, M. Orthogonal Signal Correction to Improve Stability Regression Model in Gas Sensor Systems. J. Sens. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Xin, C.; Xiang, W.; Huang, Z.; Wang, F. Performance Analysis of ICA in Sensor Array. Sensors 2016, 16, 637. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Li, D.; Wu, M. An Active Feature Selection Strategy for DWT in Artificial Taste. J. Sens. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kadri, C.; Tian, F.; Zhang, L. Neural Network Ensembles for Online Gas Concentration Estimation Using an Electronic Nose. Int. J. Comput. Sci. Issues 2013, 10, 129–135. [Google Scholar]
- Verma, M.; Asmita, S.; Shukla, K.K. A Regularized Ensemble of Classifiers for Sensor Drift Compensation. IEEE Sens. J. 2016, 16, 1310–1318. [Google Scholar] [CrossRef]
- Liu, H.; Chu, R.; Tang, Z. Metal oxide gas sensor drift compensation using a two-dimensional classifier ensemble. Sensors 2015, 15, 10180–10193. [Google Scholar] [CrossRef] [PubMed]
- Zuppa, M.; Distante, C.; Siciliano, P.; Persaud, K.C. Drift counteraction with multiple self-organising maps for an electronic nose. Sens. Actuators B Chem. 2004, 98, 305–317. [Google Scholar] [CrossRef]
- Licen, S.; Barbieri, G.; Fabbris, A.; Briguglio, S.C.; Pillon, A.; Stel, F.; Barbieri, P. Odor Control Map: Self Organizing Map built from electronic nose signals and integrated by different instrumental and sensorial data to obtain an assessment tool for real environmental scenarios. Sens. Actuators B Chem. 2018, 263, 476–485. [Google Scholar] [CrossRef]
- Llobet, E.; Hines, E.L.; Gardner, J.W.; Bartlett, P.N.; Mottram, T.T. Fuzzy ARTMAP based electronic nose data analysis. Sens. Actuators B Chem. 1999, 61, 183–190. [Google Scholar] [CrossRef]
- Distante, C.; Siciliano, P.; Vasanelli, L. Odor discrimination using adaptive resonance theory. Sens. Actuators B Chem. 2000, 69, 248–252. [Google Scholar] [CrossRef]
- Martinelli, E.; Magna, G.; Vito, S.D.; Di Fuccio, R.; Di Francia, G.; Vergara, A.; Di Natale, C. An adaptive classification model based on the Artificial Immune System for chemical sensor drift mitigation. Sens. Actuators B Chem. 2013, 177, 1017–1026. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Ye, M. Drift Compensation for Electronic Nose by Semi-Supervised Domain Adaption. IEEE Sens. J. 2014, 14, 657–665. [Google Scholar] [CrossRef]
- Guyon, I.; Cawley, G.; Dror, G.; Lemaire, V. Design and analysis of the WCCI 2010 active learning challenge. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010. [Google Scholar]
- Angluin, D. Queries and Concept Learning; Kluwer Academic Publishers Hingham: Hingham, MA, USA, 1998; pp. 319–342. [Google Scholar]
- Wu, W.; Liu, Y.; Guo, M.; Liu, X. Advances in Active Learning Algorithms Based on Sampling Strategy. J. Comput. Res. Dev. 2012, 49, 1162–1173. [Google Scholar]
- Lewis, D.; Gale, W.A. A sequential algorithm for training text classifiers. In Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 3–6 July 1994; Springer: New York, NY, USA, 1994. [Google Scholar]
- Jiang, X.; Jia, P.; Luo, R.; Deng, B.; Duan, S.; Yan, J. A novel electronic nose learning technique based on active learning: EQBC-RBFNN. Sens. Actuators B Chem. 2017, 249, 533–541. [Google Scholar] [CrossRef]
- Shan, J.; Zhang, H.; Liu, W.; Liu, Q. Online Active Learning Ensemble Framework for Drifted Data Streams. IEEE Trans. Neural Netw. Learn. Syst. 2018, 99, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Seung, H.S.; Opper, M.; Sompolinsky, H. Query by committee. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; ACM: New York, NY, USA, 1992; pp. 284, 287–294. [Google Scholar]
- Freund, Y.; Seung, H.S.; Shamir, E.; Tishby, N. Selective Sampling Using the Query by Committee Algorithm. Mach. Learn. 1997, 28, 133–168. [Google Scholar] [CrossRef] [Green Version]
- Mccallum, A.; Nigam, K. Employing EM and Pool-Based Active Learning for Text Classification. In Proceedings of the Fifteenth International Conference on Machine Learning, Madison, WI, USA, 24–27 July 1998; Morgan Kaufmann Publishers: San Francisco, CA, USA, 1998; pp. 350–358. [Google Scholar]
- Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 2012, 166–167, 320–329. [Google Scholar] [CrossRef]
RBF-SVM | GFK-SVM | Comgfk-SVM | Comgfk-ML | RBF-ML | AL-US | AL-QBC | AL-EQBC | AL-ACR | |
---|---|---|---|---|---|---|---|---|---|
Batch 2 | 74.36 | 72.75 | 74.47 | 80.25 | 42.25 | 53.55 | 65.34 | 65.23 | 98.61 |
Batch 3 | 61.03 | 70.08 | 70.15 | 74.99 | 73.69 | 83.26 | 65.83 | 65.80 | 87.39 |
Batch 4&5 | 32.96 | 68.64 | 68.20 | 72.53 | 70.70 | 57.93 | 69.76 | 69.76 | 72.64 |
Batch 6 | 28.26 | 73.82 | 73.99 | 77.82 | 77.51 | 51.62 | 44.18 | 44.18 | 93.12 |
Batch 7 | 28.81 | 54.53 | 54.59 | 71.68 | 54.43 | 60.08 | 42.38 | 42.38 | 69.52 |
Batch 8&9 | 28.80 | 64.16 | 64.71 | 50.47 | 27.39 | 66.24 | 40.96 | 40.96 | 55.76 |
Batch 10 | 34.47 | 41.78 | 53.79 | 53.79 | 34.92 | 59.88 | 37.95 | 37.93 | 55.72 |
Average | 36.09 | 55.72 | 57.49 | 60.19 | 47.61 | 54.07 | 45.80 | 45.78 | 66.60 |
Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 | Class 7 | ||
---|---|---|---|---|---|---|---|---|
SCENARIO 1 | US | 12/5.71% | 35/16.67% | 99/47.14% | 5/2.38% | 34/16.19% | 25/11.90% | 0/0.00% |
QBC | 61/28.24% | 56/25.93% | 18/8.33% | 48/22.22% | 24/11.11% | 3/1.39% | 0/0.00% | |
EQBC | 60/28.57% | 57/27.14% | 16/7.62% | 48/22.86% | 21/10.00% | 8/3.81% | 0/0.00% | |
ACR | 28/13.33% | 33/15.71% | 23/10.95% | 50/23.81% | 45/21.43% | 31/14.76% | 0/0.00% | |
SCENARIO 2 | US | 82/37.96% | 15/6.95% | 7/3.24% | 94/43.52% | 10/4.63% | 8/3.70% | 0/0.00% |
QBC | 28/12.96% | 33/15.28% | 98/45.37% | 13/6.02% | 36/16.67% | 8/3.70% | 0/0.00% | |
EQBC | 16/7.41% | 28/12.96% | 111/51.39% | 20/9.26% | 36/16.67% | 5/2.31% | 0/0.00% | |
ACR | 28/12.96% | 31/14.35% | 35/16.20% | 42/19.45% | 51/23.61% | 29/13.43% | 0/0.00% | |
SCENARIO 3 | US | 43/20.48% | 10/4.76% | 15/7.14% | 83/39.52% | 35/16.67% | 24/11.43% | 0/0.00% |
QBC | 1/0.46% | 61/28.24% | 53/24.54% | 0/0.00% | 85/39.35% | 10/4.63% | 0/0.00% | |
EQBC | 1/0.48% | 53/25.24% | 60/28.57% | 5/2.38% | 80/38.10% | 11/5.23% | 0/0.00% | |
ACR | 35/16.67% | 47/22.38% | 26/12.38% | 48/22.86% | 31/14.76% | 23/10.95% | 0/0.00% | |
SCENARIO 4 | US | 0/0.00% | 17/24.29% | 18/25.71% | 1/1.42% | 17/24.29% | 17/24.29% | 0/0.00% |
QBC | 18/25.71% | 14/20.00% | 4/5.71% | 4/5.71% | 9/12.86% | 6/8.57% | 15/21.44 | |
EQBC | 18/25.71% | 16/22.86% | 4/5.71% | 7/10.00% | 8/11.43% | 4/5.71% | 13/18.58% | |
ACR | 9/12.86% | 12/17.14% | 14/20.00% | 8/11.43% | 11/15.71% | 13/18.57% | 3/4.29% |
N = 6 | N = 12 | N = 18 | N = 24 | N = 30 | N = 36 | N = 42 | N = 48 | N = 54 | N = 60 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
SCENARIO 1 | US | 14.29 | 12.78 | 11.32 | 13.23 | 13.33 | 13.01 | 12.76 | 13.42 | 14.00 | 13.91 |
QBC | 10.54 | 11.45 | 13.37 | 13.40 | 13.60 | 13.04 | 13.96 | 15.01 | 15.17 | 15.09 | |
EQBC | 10.54 | 11.52 | 13.39 | 13.40 | 13.80 | 13.68 | 14.53 | 15.68 | 15.43 | 15.94 | |
ACR | 14.46 | 16.05 | 15.12 | 15.59 | 15.55 | 15.25 | 16.51 | 15.89 | 16.84 | 16.74 | |
SCENARIO 2 | US | 11.85 | 12.57 | 12.71 | 13.05 | 13.09 | 12.68 | 13.61 | 13.78 | 13.98 | 14.03 |
QBC | 11.67 | 11.43 | 11.59 | 12.00 | 11.79 | 11.91 | 12.72 | 14.06 | 14.23 | 14.25 | |
EQBC | 11.61 | 11.52 | 11.80 | 11.69 | 11.45 | 11.60 | 13.49 | 14.10 | 13.50 | 14.35 | |
ACR | 13.48 | 14.85 | 15.12 | 16.06 | 15.86 | 16.00 | 15.88 | 15.74 | 15.92 | 15.86 | |
SCENARIO 3 | US | 11.48 | 11.12 | 12.52 | 13.27 | 13.62 | 13.50 | 13.18 | 13.30 | 13.24 | 13.74 |
QBC | 12.30 | 12.57 | 12.57 | 12.55 | 12.62 | 12.82 | 12.83 | 12.36 | 12.73 | 12.78 | |
EQBC | 12.30 | 12.68 | 12.76 | 12.70 | 12.76 | 12.97 | 12.52 | 12.40 | 12.45 | 12.64 | |
ACR | 13.26 | 13.46 | 13.55 | 14.25 | 14.31 | 14.26 | 14.23 | 14.07 | 14.10 | 14.38 |
N = 7 | N = 14 | N = 21 | N = 28 | N = 35 | N = 42 | N = 49 | N = 56 | N = 63 | ||
---|---|---|---|---|---|---|---|---|---|---|
SCENARIO 4 | US | 7.13 | 10.84 | 12.82 | 13.07 | 13.59 | 16.50 | 18.34 | 17.88 | 18.13 |
QBC | 9.13 | 8.70 | 13.10 | 13.07 | 14.39 | 15.20 | 15.76 | 16.86 | 18.13 | |
EQBC | 9.13 | 11.76 | 10.36 | 12.44 | 12.44 | 15.80 | 16.88 | 16.94 | 18.13 | |
ACR | 10.00 | 11.76 | 14.99 | 15.98 | 16.16 | 16.50 | 18.08 | 18.05 | 18.13 |
N = 6 | N = 12 | N = 18 | N = 24 | N = 30 | N = 36 | N = 42 | N = 48 | N = 54 | N = 60 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
SCENARIO 1 | US | 12.96 | 13.02 | 12.22 | 15.40 | 15.57 | 15.84 | 15.46 | 15.57 | 16.08 | 16.22 |
QBC | 10.99 | 11.92 | 12.24 | 12.39 | 12.36 | 12.36 | 12.85 | 13.93 | 14.68 | 15.22 | |
EQBC | 10.96 | 11.89 | 12.28 | 12.39 | 12.92 | 13.02 | 12.95 | 14.04 | 15.08 | 15.78 | |
ACR | 18.98 | 18.48 | 18.02 | 18.22 | 17.73 | 17.63 | 18.07 | 17.88 | 18.00 | 18.64 | |
SCENARIO 2 | US | 12.96 | 13.93 | 12.79 | 13.86 | 14.25 | 15.09 | 15.97 | 15.99 | 15.88 | 15.96 |
QBC | 15.15 | 16.81 | 16.67 | 16.23 | 16.54 | 17.11 | 16.85 | 17.22 | 17.00 | 17.42 | |
EQBC | 13.13 | 15.19 | 15.30 | 15.25 | 14.75 | 15.38 | 16.17 | 15.97 | 16.09 | 16.56 | |
ACR | 14.85 | 16.73 | 17.17 | 16.73 | 17.15 | 17.14 | 17.03 | 17.21 | 17.53 | 17.46 | |
SCENARIO 3 | US | 13.83 | 16.00 | 15.52 | 17.18 | 17.14 | 16.79 | 17.48 | 16.98 | 17.39 | 17.32 |
QBC | 13.71 | 14.13 | 15.14 | 15.15 | 15.22 | 14.30 | 14.00 | 14.19 | 14.17 | 13.94 | |
EQBC | 13.71 | 13.76 | 14.77 | 15.42 | 15.22 | 14.69 | 14.94 | 14.72 | 14.76 | 14.77 | |
ACR | 14.29 | 16.66 | 16.62 | 16.71 | 15.95 | 17.64 | 16.68 | 17.60 | 17.69 | 18.20 |
N = 7 | N = 14 | N = 21 | N = 28 | N = 35 | N = 42 | N = 49 | N = 56 | N = 63 | ||
---|---|---|---|---|---|---|---|---|---|---|
SCENARIO 4 | US | 15.65 | 12.24 | 13.62 | 14.49 | 14.43 | 17.51 | 19.46 | 19.12 | 18.98 |
QBC | 14.52 | 15.61 | 16.26 | 17.12 | 16.90 | 17.16 | 18.08 | 18.52 | 18.98 | |
EQBC | 16.15 | 17.14 | 17.21 | 16.94 | 18.14 | 17.42 | 17.65 | 18.78 | 18.98 | |
ACR | 15.65 | 12.24 | 13.62 | 14.49 | 14.43 | 17.51 | 19.46 | 19.12 | 18.98 |
N = 6 | N = 12 | N = 18 | N = 24 | N = 30 | N = 36 | N = 42 | N = 48 | N = 54 | N = 60 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
SCENARIO 1 | US | 9.05 | 10.36 | 9.16 | 9.20 | 11.27 | 10.77 | 11.05 | 11.00 | 12.91 | 12.49 |
QBC | 9.62 | 10.27 | 13.30 | 12.61 | 13.05 | 14.14 | 14.32 | 13.60 | 13.90 | 14.33 | |
EQBC | 9.62 | 10.25 | 13.67 | 12.53 | 14.80 | 14.41 | 13.31 | 14.17 | 13.51 | 15.19 | |
ACR | 12.37 | 14.68 | 16.87 | 18.03 | 18.08 | 17.59 | 17.68 | 17.57 | 18.25 | 18.15 | |
SCENARIO 2 | US | 14.39 | 14.56 | 14.40 | 15.03 | 15.18 | 13.68 | 13.73 | 15.03 | 15.83 | 15.68 |
QBC | 13.65 | 15.62 | 14.40 | 14.99 | 14.64 | 15.82 | 16.11 | 15.88 | 16.03 | 15.87 | |
EQBC | 13.57 | 15.02 | 14.69 | 14.88 | 14.08 | 15.15 | 15.33 | 16.38 | 15.72 | 15.73 | |
ACR | 16.86 | 18.57 | 17.63 | 18.12 | 17.70 | 17.63 | 18.49 | 18.22 | 18.14 | 18.79 | |
SCENARIO 3 | US | 14.70 | 14.61 | 14.53 | 15.23 | 16.95 | 16.77 | 16.33 | 16.45 | 16.90 | 16.71 |
QBC | 12.81 | 13.68 | 13.41 | 13.04 | 12.66 | 13.15 | 12.11 | 12.35 | 13.44 | 13.38 | |
EQBC | 12.81 | 12.85 | 13.26 | 12.39 | 12.06 | 13.76 | 13.27 | 14.03 | 14.12 | 13.99 | |
ACR | 16.12 | 18.28 | 17.07 | 18.18 | 17.92 | 17.43 | 17.89 | 17.82 | 18.20 | 17.67 |
N = 7 | N = 14 | N = 21 | N = 28 | N = 35 | N = 42 | N = 49 | N = 56 | N = 63 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SCENARIO 4 | US | 8.23 | 10.82 | 8.98 | 9.25 | 10.26 | 13.21 | 14.16 | 13.86 | 13.50 | |||||||
QBC | 9.35 | 10.10 | 15.40 | 13.42 | 12.38 | 12.86 | 13.13 | 14.63 | 13.50 | ||||||||
EQBC | 9.35 | 10.82 | 13.13 | 15.06 | 11.76 | 12.60 | 14.59 | 11.65 | 13.50 | ||||||||
ACR | 12.35 | 10.82 | 13.70 | 14.33 | 13.80 | 13.65 | 13.99 | 13.86 | 13.50 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Li, D.; Chen, J.; Chen, Y.; Yang, T.; Cao, J. Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose. Sensors 2018, 18, 4028. https://doi.org/10.3390/s18114028
Liu T, Li D, Chen J, Chen Y, Yang T, Cao J. Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose. Sensors. 2018; 18(11):4028. https://doi.org/10.3390/s18114028
Chicago/Turabian StyleLiu, Tao, Dongqi Li, Jianjun Chen, Yanbing Chen, Tao Yang, and Jianhua Cao. 2018. "Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose" Sensors 18, no. 11: 4028. https://doi.org/10.3390/s18114028
APA StyleLiu, T., Li, D., Chen, J., Chen, Y., Yang, T., & Cao, J. (2018). Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose. Sensors, 18(11), 4028. https://doi.org/10.3390/s18114028