Characterization of Sicilian Honeys Pollen Profiles Using a Commercial E-Tongue and Melissopalynological Analysis for Rapid Screening: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Samples
2.2. E-Tongue
2.3. Melissopalynological Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. E-Tongue
3.2. Melissopalynological Analysis
3.3. Validation of E-Tongue Results through Melissopalynological Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Okeke, O.; Okeke, M.U.; Ezejiofor, C.C.; Ndubuisi, J.O. Antimicrobial Activity of Honeys from Nsukka and Ugwuaji in Enugu State, on Selected Pathogenic Bacteria Isolated from Wound. Adv. Anal. Chem. 2018, 8, 6–9. [Google Scholar] [CrossRef]
- Mohammed, F.; Abdulwali, N.; Guillaume, D.; Bchitou, R. Element content of Yemeni honeys as a long-time marker to ascertain honey botanical origin and quality. LWT–Food Sci. Technol. 2018, 88, 43–46. [Google Scholar] [CrossRef]
- Matysiak, I.; Balcerzak, M.; Michalski, R. Ion chromatography with conductimetric detection for quantitation of formic acid in Polish bee honey. J. Food Compos. Anal. 2018, 73, 55–59. [Google Scholar] [CrossRef]
- Spiteri, M.; Jamin, E.; Thomas, F.; Rebours, A.; Lees, M.; Rogers, K.M.; Rutledge, D.N. Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chem. 2015, 189, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.T.; Dillon, A.; Warren, J.; Walker, M.J. A critical review of the factors available for the identification and determination of Manuka honey. Food Anal. Methods 2018, 11, 1561–1567. [Google Scholar] [CrossRef]
- Nayik, G.A.; Nanda, V. Physico-chemical, enzymatic, mineral and colour characterization of three different varieties of honeys from Kashmir Valley of India with a multivariate approach. Pol. J. Food Nutr. Sci. 2015, 65, 101–108. [Google Scholar] [CrossRef]
- Saitta, M.; Di Bella, G.; Fede, M.R.; Lo Turco, V.; Potortì, A.G.; Rando, R.; Russo, M.T.; Dugo, G. Gas chromatography-tandem mass spectrometry multi-residual analyses of contaminants in Italian honey samples. Food Addit. Contam. Part A 2017, 34, 800–808. [Google Scholar] [CrossRef]
- Gan, Z.; Yang, Y.; Li, J.; Wen, X.; Zhu, M.; Jiang, Y.; Ni, Y. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. Int. J. Food Eng. 2016, 178, 151–158. [Google Scholar] [CrossRef]
- Oroian, M.; Amariei, S.; Escriche, I.; Leahu, A.; Damian, C.; Gutt, G. Chemical composition and temperature influence on the rheological behaviour of honeys. Int. J. Food Prop. 2014, 17, 2228–2240. [Google Scholar] [CrossRef]
- Attanzio, A.; Tesoriere, L.; Allegra, M.; Livrea, M.A. Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula) have high reducing power and antioxidant capacity. Helyon 2016, 2, e00193. [Google Scholar] [CrossRef] [PubMed]
- Moussa, A.; Noureddine, D.; Abdelmelek, M.; Saad, A. Antibacterial activity of various honey types of Algeria against pathogenic Gram-negative bacilli: Escherichia coli and Pseudomonas aeruginosa. Asian Pac. J. Trop. Dis. 2012, 2, 211–214. [Google Scholar] [CrossRef]
- Sousa, M.E.C.B.; Dias, L.G.; Veloso, A.C.A.; Estevinho, L.; Peres, A.M.; Machado, A.A.S.C. Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue. Talanta 2014, 128, 284–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escriche, I.; Kadar, M.; Domenech, E.; Gil-Sanchez, L. A potentiometric electronic tongue for the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile. Int. J. Food Eng. 2012, 109, 449–456. [Google Scholar] [CrossRef]
- Escriche, I.; Kadar, M.; Juan-Borras, M.; Domenech, E. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem. 2014, 142, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Scandurra, G.; Tripodi, G.; Verzera, A. Impedance spectroscopy for rapid determination of honey floral origin. J. Food Eng. 2013, 119, 738–743. [Google Scholar] [CrossRef]
- Dias, L.G.; Veloso, A.C.A.; Sousa, M.E.B.C.; Estevinho, L.; Machado, A.A.S.C.; Peres, A.M. A novel approach for honey pollen profile assessment using an electronic tongue and chemometric tools. Anal. Chim. Acta 2015, 900, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perna, A.; Simonetti, A.; Intaglietta, I.; Sofo, A.; Gambacorta, E. Metal content of southern Italy honey of different botanical origins and its correlation with polyphenol content and antioxidant activity. Int. J. Food Sci. Technol. 2012, 47, 1909–1917. [Google Scholar] [CrossRef]
- Corvucci, F.; Nobili, L.; Melucci, D.; Grillenzoni, F.-V. The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem. 2015, 169, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Jandric, Z.; Haughey, S.A.; Frew, R.D.; McComb, K.; Galvin-King, P.; Elliot, C.T.; Cannavan, A. Discrimination of honey of different floral origins by a combination of various physicochemical parameters. Food Chem. 2015, 189, 52–59. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, J.M.B.; de Souza, E.L.; Marques, G.; Benassi, M.D.T.; Gullon, B.; Pintado, M.M.; Magnani, M. Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT–Food Sci. Technol 2016, 65, 645–651. [Google Scholar] [CrossRef]
- Marcazzan, G.L.; Mucignat-Caretta, C.; Marchese, C.M.; Piana, M.L. A review of methods for honey sensory analyses. J. Apic. Res. 2018, 57, 75–87. [Google Scholar] [CrossRef]
- Piana, M.L.; Persano Oddo, L.; Bentabol, A.; Bruneau, E.; Bogdanov, S.; Guyot Declerck, C. Sensory analysis applied to honey: state of the art. Apidologie 2004, 35, 26–37. [Google Scholar] [CrossRef]
- Kus, P.M.; Congiu, F.; Teper, D.; Sroka, Z.; Jerkovic, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT–Food Sci. Technol. 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Kus, P.M.; van Ruth, S. Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics. LWT–Food Sci. Technol. 2015, 62, 69–75. [Google Scholar] [CrossRef]
- Kus, P.M.; Jerkovic, I.; Marijanovic, Z.; Tuberoso, C.I.G. Screening of Polish Fir Honeydew Honey Using GC/MS, HPLC-DAD, and Physical-Chemical Parameters: Benzene Derivatives and Terpenes as Chemical Markers. Chem. Biodivers. 2017, 14, e1700179. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jin, L.; Chang, Q.; Peng, T.; Hu, X.; Fan, C.; Pang, G.; Lu, M.; Wang, W. Discrimination of botanical origins for Chinese honey according to free amino acids content by high-performance liquid chromatography with fluorescence detection with chemometric approaches. J. Sci. Food Agric. 2017, 97, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhao, L.; Cheng, N.; Xue, X.; Wu, L.; Zheng, J.; Cao, W. Identification of botanical origin of Chinese unifloral honeys by free amino acid profiles and chemometric methods. J. Pharm. Anal. 2017, 7, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Vlasiou, M.; Kontakos, S.; Drouza, C.; Kontominas, M.G.; Keramidas, A.D. Geographical discrimination of pine and fir honeys using multivariate analyses of major and minor honey components identified by 1H NMR and HPLC along with physicochemical data. Eur. Food Res. Technol. 2018, 244, 1249–1259. [Google Scholar] [CrossRef]
- Mannina, L.; Sobolev, A.P.; Di Lorenzo, A.; Vista, S.; Tenore, G.C.; Daglia, M. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula). J. Agric. Food Chem. 2015, 63, 5864–5874. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, H.; Zhang, B.; Wu, D. Application of electronic nose with multivariate analysis and sensor selection for botanical identification and quality determination of honey. Food Bioprocess Technol. 2015, 8, 359–370. [Google Scholar] [CrossRef]
- Tretola, M.; Di Rosa, A.R.; Tirloni, E.; Ottoboni, M.; Giromini, C.; Leone, F.; Bernardi, C.E.M.; Dell’Orto, V.; Chiofalo, V.; Pinotti, L. Former food products safety: microbiological quality and computer vision evaluation of packaging remnants contamination. Food Add. Cont. A 2017, 34, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Tretola, M.; Ottoboni, M.; Di Rosa, A.R.; Giromini, C.; Fusi, E.; Rebucci, R.; Leone, F.; Dell’Orto, V.; Chiofalo, V.; Pinotti, L. Former food products safety evaluation: Computer vision as an innovative approach for the packaging remnants detection. J. Food Qual. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment—A review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Ha, D.; Sun, Q.; Su, K.; Wan, H.; Li, H.; Xu, N.; Sun, F.; Zhuang, L.; Hu, N.; Wang, P. Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Sens. Actuators B 2015, 207, 1136–1146. [Google Scholar] [CrossRef]
- Persaud, K. Electronic noses and tongues in the food industry. In Electronic Noses and Tongues in Food Science; Rodriguez-Mendez, M.L., Ed.; Academic Press: London, UK, 2016. [Google Scholar]
- Tudor Kalit, M.; Markovic, K.; Kalit, S.; Vahcic, N.; Havranek, J. Application of electronic nose and electronic tongue in the dairy industry. Mljekarstvo 2014, 64, 228–244. [Google Scholar] [CrossRef]
- Del Valle, M. Electronic Tongues Employing Electrochemical Sensors. Electroanalysis 2010, 22, 1539–1555. [Google Scholar] [CrossRef]
- Toko, K.; Tahara, Y. Beer Analysis Using an Electronic Tongue. In Electronic Noses and Tongues in Food Science; Rodriguez-Mendez, M.L., Ed.; Academic Press: London, UK, 2016. [Google Scholar]
- Escuder-Gilabert, L.; Peris, M. Review: Highlights in recent applications of electronic tongues in food analysis. Anal. Chim. Acta 2010, 665, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, M. Sensor Arrays and Electronic Tongue Systems. Int. J. Electrochem. 2012, 2012, 986025. [Google Scholar] [CrossRef]
- Ciosek, P.; Wroblewski, W. Sensor arrays for liquid sensing—electronic tongue systems. Analyst 2007, 132, 963–978. [Google Scholar] [CrossRef] [PubMed]
- Bratov, A.; Abramova, N.; Ipatov, A. Recent trends in potentiometric sensor arrays—A review. Anal. Chim. Acta 2010, 678, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Bougrini, M.; Tahri, T.; El Hassani, N.E.A.; Bouchikhi, B.; El Bari, N. Classification of honey according to geographical and botanical origins and detection of its adulteration using voltammetric electronic tongue. Food Anal. Methods 2016, 9, 2161–2173. [Google Scholar] [CrossRef]
- Tiwari, P.; Naithani, P. Physicochemical properties of some honey samples of different floral origins from garhwal Himalaya. J. Indian Bot. Soc. 2017, 96, 243–252. [Google Scholar]
- Di Rosa, A.R.; Leone, F. Application of electronic nose systems on animal source food—An overview. In Handbook of Research on Electronic Noses and Odor Sensing Technology; Albastaki, Y., Albalooshi, F., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 151–174. ISBN 9781522538622. [Google Scholar]
- Di Rosa, A.R.; Leone, F.; Scattareggia, C.; Chiofalo, V. Botanical origin identification of Sicilian honeys based on artificial senses and multi-sensor data fusion. Eur. Food Res. Technol. 2018, 244, 117–125. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Novel approach for the characterization of Sicilian honeys based on the correlation of physicochemical parameters and artificial senses. Ital. J. Anim. Sci. 2018, in press. [Google Scholar] [CrossRef]
- Juan-Borras, M.; Soto, J.; Gil-Sanchez, L.; Pascual-Maté, A.; Escriche, I. Antioxidant activity and physicochemical parameters for the differentiation of honey using potentiometric electronic tongue. J. Sci. Food Agric. 2017, 97, 2215–2222. [Google Scholar] [CrossRef] [PubMed]
- El Hassani, N.E.A.; Tahri, K.; Llobet, E.; Bouchikhi, B.; Errachid, A.; Zine, N.; El Bari, N. Emerging approach for analytical characterization and geographical classification of Moroccan and French honeys by means of a voltammetric electronic tongue. Food Chem. 2017, 243, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Paduret, S.; Ropciuc, S. Honey adulteration detection: voltammetric e-tongue versus official methods for physicochemical parameter determination. J. Sci. Food Agric. 2018, 98, 4304–4311. [Google Scholar] [CrossRef] [PubMed]
- Sobrino-Gregorio, L.; Bataller, R.; Soto, J.; Escriche, I. Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control. 2018, 91, 254–260. [Google Scholar] [CrossRef]
- Scepankova, H.; Paula, V.B.; Estevinho, L.M.; Dias, L.G.; Saraiva, J. Study of high pressure and temperature effects on heather honey during storage: Electronic tongue and physicochemical properties. In Proceedings of the 1st Food Chemistry Conference, Amsterdam, The Netherlands, 30 October–1 November 2016. [Google Scholar]
- Norma Italiana UNI 11383 Eucalyptus Honey—Definition, Requirements and Methods of Analysis. Available online: http://store.uni.com/catalogo/index.php/uni-11383-2010.html (accessed on 21 November 2018).
- Norma Italiana UNI 11384 Citrus Honey (Citrus spp.)—Definition, Requirements and Methods of Analysis. Available online: http://store.uni.com/catalogo/index.php/uni-11384-2010.html (accessed on 21 November 2018).
- Norma Italiana UNI 11376 Chestnut Honey (Castanea sativa Miller)—Definition, Requirements and Methods of Analysis. Available online: http://store.uni.com/catalogo/index.php/uni-11376-2010.html (accessed on 21 November 2018).
- Norma Italiana UNI 11299:2008 Honey—Microscopical or Melissopalynological Analysis. Available online: http://store.uni.com/catalogo/index.php/uni-11299-2008.html (accessed on 21 November 2018).
- Thakodee, T.; Deowanish, S.; Duangmal, K. Melissopalynological analysis of stingless bee (Tetragonula pagdeni) honey in Eastern Thailand. J. Asia-Pac. Entomol. 2018, 21, 620–630. [Google Scholar] [CrossRef]
- Rosdi, I.N.; Selvaraju, K.; Vikram, P.; Thevan, K.; Arifullah, M. Melissopalynological Analysis of Forest Honey from North Malaysia. J. Trop. Resour. Sustain. Sci. 2016, 4, 128–132. [Google Scholar]
- Gencay Celemli, O.; Ozenirler, C.; Ecem Bayram, N.; Zare, G.; Sorkun, K. Melissopalynological Analysis for Geographical Marking of Kars Honey. Kafkas Universitesi Veteruber Fakultesi Dergisi 2017, 24, 53–59. [Google Scholar]
- Sliwinska, M.; Wisniewska, P.; Dymerski, T.; Namiesnik, J.; Wardenki, W. Food analysis using artificial senses. J. Agric. Food Chem. 2014, 62, 1423–1448. [Google Scholar] [CrossRef] [PubMed]
- Borras, E.; Ferré, J.; Boqué, R.; Mestres, M.; Acena, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ballabio, D. A MATLAB toolbox for principal component analysis and unsupervised exploration of data structure. Chemom. Intell. Lab. Syst. 2015, 149, 1–9. [Google Scholar] [CrossRef]
- Sharifzadeh, S.; Ghodsi, A.; Clemmensen, L.H.; Ersboll, B.K. Sparse supervised principal component analysis (SSPCA) for dimension reduction and variable selection. Eng. Appl. Artif. Intell. 2017, 65, 168–177. [Google Scholar] [CrossRef]
- De Maesschalck, R.; Candolfi, A.; Massart, D.L.; Heuerding, S. Decision criteria for soft indipendent modelling of class analogy applied to near infrared data. Chemom. Intell. Lab. Syst. 1999, 47, 65–77. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J. Tracing floral and geographical origins of honeys by potentiometric and voltammetric electronic tongue. Comput. Electron. Agric. 2014, 108, 112–122. [Google Scholar] [CrossRef]
- Veloso, A.C.A.; Sousa, M.E.B.C.; Estevinho, L.; Dias, L.G.; Peres, A.M. Honey evaluation using electronic tongues—An overview. Chemosensors 2018, 6, 28. [Google Scholar] [CrossRef]
- Oroian, M.; Amariei, S.; Rosu, A.; Gutt, G. Classification of unifloral honeys using multivariate analysis. J. Essent. Oil Res. 2015, 27, 533–544. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Golob, T.; Kropf, U.; Korosec, M. Characterisation of Slovenian honeys on the basis of sensory and physicochemical analysis with a chemometric approach. Int. J. Food Sci. Technol. 2011, 46, 1661–1671. [Google Scholar] [CrossRef]
- Oroian, M. Physicochemical and rheological properties of Romanian honeys. Food Biophys. 2012, 7, 296–307. [Google Scholar] [CrossRef]
- Karabagias, I.L.; Badeka, A.V.; Kontakos, S.; Karabournioti, S.; Kontominas, M.G. Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses. Food Chem. 2014, 165, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Ropciuc, S.; Buculei, A. Romanian honey authentication based on physico-chemical parameters and chemometrics. J. Food Meas. Charact. 2017, 11, 719–725. [Google Scholar] [CrossRef]
- Ciosek, P.; Wroblewski, W. Potentiometric electronic tongue for foodstuff and biosample recognition—An overview. Sensors 2011, 11, 4688–4701. [Google Scholar] [CrossRef] [PubMed]
Entry | Statistical Analysis label | Declared Botanical Origin | Geographical Origin | Type of Sample |
---|---|---|---|---|
1 | CATP15VE | Chestnut | Trapani | Testing |
2 | 17662 | Chestnut | Messina | Testing |
3 | CAA | Chestnut | Catania | Testing |
4 | CATP | Chestnut | Trapani | Testing |
5 | CAIZSB | Chestnut | BIPEA Proficiency Testing | Training |
6 | CAIZSR | Chestnut | BIPEA Proficiency Testing | Training |
7 | 17587 | Chestnut | Catania | Testing |
8 | EUAN | Eucalyptus | Catania | Testing |
9 | EUA2 | Eucalyptus | Catania | Testing |
10 | EUA1 | Eucalyptus | Catania | Testing |
11 | 17656 | Eucalyptus | Messina | Training |
12 | 17588 | Eucalyptus | Catania | Testing |
13 | 17654 | Eucalyptus | Ragusa | Training |
14 | 17669 | Sulla | Catania | Testing |
15 | SUTP | Sulla | Trapani | Training |
16 | SUSM | Sulla | Agrigento | Training |
17 | 17593 | Sulla | Catania | Testing |
18 | 17670 | Sulla | Catania | Testing |
19 | SUPA | Sulla | Palermo | Testing |
20 | ZAIZSR | Citrus | BIPEA Proficiency Testing | Training |
21 | ZAIZSB | Citrus | BIPEA Proficiency Testing | Training |
22 | 17589 | Citrus | Catania | Testing |
23 | ZARG | Citrus | Ragusa | Testing |
Entry | Predominant Pollen (PP, >45%) | Secondary Pollen (SP, 15–45%) | Important Minor Pollen (IMP, 3–15%) |
---|---|---|---|
1 | Castanea 93% | Absent | Absent |
2 | Castanea 92% | <3% | |
3 | Castanea 72% | Umbelliferae (36%) | Absent |
4 | Castanea 92% | Absent | Eucalyptus |
5 | Castanea 93% | Absent | Eucalyptus |
6 | Castanea >95% | Absent | Absent |
7 | Castanea 73% | Absent | Hedysarium (14%), Eucalyptus (3.6%) |
8 | Eucalyptus 69% | Abesent | Hedysarium (11%), Erica (9%), Castanea (3.1%) |
9 | Eucalyptus 70% | Absent | Hedysarium (13%), Erica (7.5%) |
10 | Eucalyptus 63% | Hedysarium (16%) | Erica (7.4%) |
11 | Eucalyptus 92% | Absent | Absent |
12 | Eucalyptus 79% | Absent | Castanea (8%), Umbelliferae (4.4%) |
13 | Eucalyptus 95% | Absent | Absent |
14 | Hedysarium (86%) | Absent | Umbellifearae |
15 | Hedysarium 89% | Absent | Umbelliferae (3.6%) |
16 | Hedysarium 91% | Absent | Absent |
17 | Hedysarium 84% | Absent | Echium (10%) |
18 | Hedysarium 84% | Absent | Absent |
19 | Hedysarium (66%) | Absent | Melilotus, Cruciferae |
20 | Quercus i. (70%) | Citrus (20%) | Oleaceae |
21 | Citrus 15% | / | |
22 | Echium (72%) | Absent | Citrus (5.2%), Malus/Pyrus |
23 | Absent | Absent | Citrus, Hedysarium, Castanea, Echium, Compositae S, Cruciferae, Trifolium |
Entry | Botanical Origin Confirmed from E-Tongue | Botanical Origin Confirmed from Melissopalynological Analysis | Match between the Two Methods |
---|---|---|---|
1 | Yes | Yes | Yes |
2 | Yes | Yes | Yes |
3 | No | No | Yes |
4 | Yes | Yes | Yes |
5 | Yes | Yes | Yes |
6 | Yes | Yes | Yes |
7 | No | No | Yes |
8 | No | No | Yes |
9 | No | No | Yes |
10 | No | No | Yes |
11 | Yes | Yes | Yes |
12 | No | No | Yes |
13 | Yes | Yes | Yes |
14 | Yes | Yes | Yes |
15 | Yes | Yes | Yes |
16 | Yes | Yes | Yes |
17 | Yes | Yes | Yes |
18 | Yes | Yes | Yes |
19 | Yes | Yes | Yes |
20 | Yes | Yes | Yes |
21 | Yes | Yes | Yes |
22 | Yes | Yes | Yes |
23 | Yes | Yes | Yes |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Rosa, A.R.; Marino, A.M.F.; Leone, F.; Corpina, G.G.; Giunta, R.P.; Chiofalo, V. Characterization of Sicilian Honeys Pollen Profiles Using a Commercial E-Tongue and Melissopalynological Analysis for Rapid Screening: A Pilot Study. Sensors 2018, 18, 4065. https://doi.org/10.3390/s18114065
Di Rosa AR, Marino AMF, Leone F, Corpina GG, Giunta RP, Chiofalo V. Characterization of Sicilian Honeys Pollen Profiles Using a Commercial E-Tongue and Melissopalynological Analysis for Rapid Screening: A Pilot Study. Sensors. 2018; 18(11):4065. https://doi.org/10.3390/s18114065
Chicago/Turabian StyleDi Rosa, Ambra R., Anna M. F. Marino, Francesco Leone, Giuseppe G. Corpina, Renato P. Giunta, and Vincenzo Chiofalo. 2018. "Characterization of Sicilian Honeys Pollen Profiles Using a Commercial E-Tongue and Melissopalynological Analysis for Rapid Screening: A Pilot Study" Sensors 18, no. 11: 4065. https://doi.org/10.3390/s18114065
APA StyleDi Rosa, A. R., Marino, A. M. F., Leone, F., Corpina, G. G., Giunta, R. P., & Chiofalo, V. (2018). Characterization of Sicilian Honeys Pollen Profiles Using a Commercial E-Tongue and Melissopalynological Analysis for Rapid Screening: A Pilot Study. Sensors, 18(11), 4065. https://doi.org/10.3390/s18114065