Electrocardiograph Identification Using Hybrid Quantization Sparse Matrix and Multi-Dimensional Approaches
Abstract
:1. Introduction
2. Related Work
3. Proposed Model
3.1. Basic Model
3.2. Advanced Model
- (1)
- ; , directly calculate D by Euclidean distance;
- (2)
- , use dynamic programming to calculate the distance between them.
4. Experiments and Evaluations
4.1. Experiment for QSMI Algorithm
4.2. Experiment for MDI Algorithm
5. Comparison
5.1. Comparison with One-Dimensional Models
5.2. Comparison with TTwo-d Dimensional MModels
5.3. Comparison with MMulti-d Dimensional MModels
5.4. Additional Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wübbeler, G.; Stavridis, M.; Kreiseler, D.; Bousseljot, R.-D.; Elster, C. Verification of humans using the electrocardiogram. Pattern Recognit. Lett. 2007, 28, 1172–1175. [Google Scholar] [CrossRef]
- Goldberger, A.L. Clinical Electrocardiography: A Simplified Approach, 7th ed.; Mosby-Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Biel, L.; Pettersson, O.; Philipson, L.; Wide, P. ECG analysis: A new approach in human identification. IEEE Trans. Instrum. Meas. 2001, 50, 808–812. [Google Scholar] [CrossRef]
- Israel, S.A.; Irvine, J.M.; Cheng, A.; Wiederhold, M.D.; Wiederhold, B.K. ECG to identify individuals. Pattern Recognit. 2005, 38, 133–142. [Google Scholar] [CrossRef]
- Shen, T.-W.; Tompkins, W.J. Biometric statistical study of one-lead ECG features and body mass index (BMI). In Proceedings of the 27th Annual International Engineering in Medicine and Biology, Shanghai, China, 1–4 September 2005; pp. 1162–1165. [Google Scholar]
- Silva, H.; Gamboa, H.; Fred, A. One lead ECG based personal identification with feature subspace ensembles. In Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition, Leipzig, Germany, 18–20 July 2007; pp. 770–783. [Google Scholar]
- Simon, B.P.; Eswaran, C. An ECG classifier designed using modified decision based neural networks. Comput. Biomed. Res. 1997, 30, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Stamkopoulos, T.; Diamantaras, K.; Maglaveras, N.; Strintzis, M. ECG analysis using nonlinear PCA neural networks for ischemia detection. IEEE Trans. Signal Process. 1998, 46, 3058–3067. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.-Q. ECG analysis based on PCA and Support Vector Machines. In Proceedings of the 2005 International Conference on Neural Networks and Brain, Beijing, China, 13–15 October 2005; pp. 743–747. [Google Scholar]
- Ranjeet, K.; Kumar, A.; Pandey, R.K. ECG Signal Compression Using Different Techniques. Commun. Comput. Inf. 2011, 125, 231–241. [Google Scholar]
- Ibaida, A.; Khalil, I.; van Schyndel, R. A low complexity high capacity ECG signal watermark for wearable sensor-net health monitoring system. In Proceedings of the Computing in Cardiology, Hangzhou, China, 18–21 September 2011; pp. 393–396. [Google Scholar]
- Kaur, S.; Farooq, O.; Singhal, R.; Ahuja, B.S. Digital watermarking of ECG data for secure wireless communication. In Proceedings of the 2010 International Conference on Recent Trends in Information, Telecommunication and Computing, Kochi, Kerala, India, 23–25 July 2010; pp. 140–144. [Google Scholar]
- Shen, T.; Tompkins, W.; Hu, Y. One-lead ECG for identity verification. In Proceedings of the 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Houston, TX, USA, 23–26 October 2002; pp. 62–63. [Google Scholar]
- Shen, T.-W.; Tompkins, W.J.; Hu, Y.H. Implementation of a one-lead ECG human identification system on a normal population. J. Eng. Comput. Innov. 2011, 2, 12–21. [Google Scholar]
- Kyoso, M.; Uchiyama, A. Development of an ECG identification system. In Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001; pp. 3721–3723. [Google Scholar]
- Agrafioti, F.; Hatzinakos, D. Fusion of ECG sources for human identification. In Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing, St Julians, Malta, 12–14 March 2008; pp. 1542–1547. [Google Scholar]
- Baumann, M.; Demianova, Z.; Franssila, S.; Kostiainen, R.; Kotiaho, T.; Pöysä, E. Multi-Dimensional Analysis. U.S. Patent 20100044228A1, 2 May 2010. [Google Scholar]
- Han, J.; Chen, Y.; Dong, G.; Pei, J.; Wah, B.W.; Wang, J.; Cai, Y.D. Stream cube: An architecture for multi-dimensional analysis of data streams. Distrib. Parallel Databases 2005, 18, 173–197. [Google Scholar] [CrossRef]
- Fritsch, M.; Brixy, U.; Falck, O. The effect of industry, region, and time on new business survival–A multi-dimensional analysis. Rev. Ind. Organ. 2006, 28, 285–306. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, G.; Han, J.; Wah, B.W.; Wang, J. Multi-dimensional regression analysis of time-series data streams. In Proceedings of the 28th International Conference on Very Large Databases, Hong Kong, China, 20–23 August 2002; pp. 323–334. [Google Scholar]
- Stainsby, W.N.; Otis, A.B. Blood flow, blood oxygen tension, oxygen uptake, and oxygen transport in skeletal muscle. Am. J. Physiol. Leg. Content 1964, 206, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.H., III. Infant Blood Oxygen Monitor and SIDS Warning Device. U.S. Patent No. 6,047,201, 4 April 2000. [Google Scholar]
- Holodny, A.I.; Ollenschleger, M.D.; Liu, W.-C.; Schulder, M.; Kalnin, A.J. Identification of the corticospinal tracts achieved using blood-oxygen-level–dependent and diffusion functional MR imaging in patients with brain tumors. Am. J. Neuroradiol. 2001, 22, 83–88. [Google Scholar] [PubMed]
- Hickam, J.B.; Frayser, R.; Ross, J.C. A study of retinal venous blood oxygen saturation in human subjects by photographic means. Circulation 1963, 27, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Vanni, S.; Polidori, G.; Vergara, R.; Pepe, G.; Nazerian, P.; Moroni, F.; Garbelli, E.; Daviddi, F.; Grifoni, S. Prognostic value of ECG among patients with acute pulmonary embolism and normal blood pressure. Am. J. Med. 2009, 122, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.Q.U.A.; Jeoti, V. ECG and blood oxygen level based Sleep Apnea study and detection. In Proceedings of the 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences, Kuala Lumpur, Malaysia, 30 November–2 December 2010; pp. 285–290. [Google Scholar]
- Shanker, A.P.; Rajagopalan, A.N. Off-line signature verification using DTW. Pattern Recognit. Lett. 2007, 28, 1407–1414. [Google Scholar] [CrossRef]
- Shokoohi-Yekta, M.; Hu, B.; Jin, H.; Wang, J.; Keogh, E. Generalizing DTW to the multi-dimensional case requires an adaptive approach. Data Min. Knowl. Discov. 2017, 31, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Yapici, M.K.; Alkhidir, T.E. Intelligent medical garments with Graphene-Functionalized smart-cloth ECG sensors. Sensors 2017, 17, 875. [Google Scholar] [CrossRef] [PubMed]
- Spanò, E.; Pascoli, S.D.; Iannaccone, G. Low-power wearable ECG monitoring system for multiple-patient remote monitoring. IEEE Sens. J. 2016, 16, 5452–5462. [Google Scholar] [CrossRef]
- Tseng, K.K.; Huang, H.N.; Zeng, F.; Tu, S.Y. ECG sensor card with evolving RBP algorithms for human verification. Sensors 2015, 15, 20730–20751. [Google Scholar] [CrossRef] [PubMed]
- Tseng, K.K.; Zeng, F.; Ip, W.H.; Wu, C.H. ECG sensor verification system with mean- interval algorithm for handling sport issue. J. Sens. 2016, 2016, 1814264. [Google Scholar] [CrossRef]
- Tseng, K.K.; Fu, L.; Liu, L.; Lee, D.; Wang, C.; Li, L. Human identification with electrocardiogram. Enterp. Inf. Syst. 2018, 12, 798–819. [Google Scholar] [CrossRef]
- Tseng, K.K.; He, X.; Kung, W.M.; Chen, S.T.; Liao, M.; Huang, H.N. Wavelet-based watermarking and compression for ECG signals with verification evaluation. Sensors 2014, 14, 3721–3736. [Google Scholar] [CrossRef] [PubMed]
- Tseng, K.K.; Luo, J.; Hegarty, R.; Wang, W.; Dong, H. Sparse Matrix for ECG Identification with Two-Lead Features. Sci. World J. 2015, 2015, 656807. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Chua, K.; Chong, W.; Lee, H.; Gu, Q. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 2003, 55, 321–336. [Google Scholar] [CrossRef]
- Sansone, M.; Fusco, R.; Pepino, A.; Sansone, C. Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: A review. J. Healthc. Eng. 2013, 4, 465–504. [Google Scholar] [CrossRef] [PubMed]
- Rundo, F.; Conoci, S.; Ortis, A.; Battiato, S. An Advanced Bio-Inspired PhotoPlethysmoGraphy (PPG) and ECG Pattern Recognition System for Medical Assessment. Sensors 2018, 18, 405. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
1 | 0 | 0 | 2 | 2 | 1 |
2 | 0 | 1 | 2 | 2 | 1 |
3 | 0 | 0 | 2 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
Item | Num_32_Red_2 | Num_32_Red_4 | Num_50_Red_10 | Baseline | |
---|---|---|---|---|---|
Memory (bytes) | |||||
Average (bytes) | 2737 | 1307 | 675 | 25,000 | |
Min | 40 | 40 | 40 | 25,000 | |
Max | 13,920 | 7240 | 2640 | 25,000 |
Item | Num_32_Red_2 | Num_32_Red_4 | Num_50_Red_10 | Baseline | |||||
---|---|---|---|---|---|---|---|---|---|
Time(s) | Train | Test | Train | Test | Train | Test | Train | Test | |
1th | 0.0966 | 1.5518 | 0.0223 | 0.3732 | 0.0060 | 0.0972 | 0.0044 | 0.0083 | |
2th | 0.0953 | 1.5780 | 0.0229 | 0.3643 | 0.0059 | 0.0984 | 0.0013 | 0.0082 | |
3th | 0.0950 | 1.5680 | 0.0226 | 0.3655 | 0.0059 | 0.0994 | 0.0014 | 0.0084 | |
Average | 0.0956 | 1.5659 | 0.0226 | 0.3677 | 0.0059 | 0.0983 | 0.0024 | 0.0083 |
Item | RBP | Waveform | Wavelet | QSMI |
---|---|---|---|---|
FA | 0.4880 | 0.2418 | 0.5196 | 0.1373 |
FR | 0 | 0.2222 | 0 | 0 |
(FA + FR)/2 | 0.2440 | 0.2320 | 0.2598 | 0.0686 |
Accuary | 75.60% | 76.8% | 74.02% | 93.14% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, K.-K.; Lo, J.; Chen, C.-C.; Tu, S.-Y.; Yang, C.-F. Electrocardiograph Identification Using Hybrid Quantization Sparse Matrix and Multi-Dimensional Approaches. Sensors 2018, 18, 4138. https://doi.org/10.3390/s18124138
Tseng K-K, Lo J, Chen C-C, Tu S-Y, Yang C-F. Electrocardiograph Identification Using Hybrid Quantization Sparse Matrix and Multi-Dimensional Approaches. Sensors. 2018; 18(12):4138. https://doi.org/10.3390/s18124138
Chicago/Turabian StyleTseng, Kuo-Kun, Jiao Lo, Chih-Cheng Chen, Shu-Yi Tu, and Cheng-Fu Yang. 2018. "Electrocardiograph Identification Using Hybrid Quantization Sparse Matrix and Multi-Dimensional Approaches" Sensors 18, no. 12: 4138. https://doi.org/10.3390/s18124138
APA StyleTseng, K. -K., Lo, J., Chen, C. -C., Tu, S. -Y., & Yang, C. -F. (2018). Electrocardiograph Identification Using Hybrid Quantization Sparse Matrix and Multi-Dimensional Approaches. Sensors, 18(12), 4138. https://doi.org/10.3390/s18124138