Crowd-Sourced Mapping of New Feature Layer for High-Definition Map
Abstract
:1. Introduction
- • Matching with the HD map:
- By considering the matching between the sensor information and the existing features in the HD map, new feature layers are generated with increased precision.
- • Crowd-sourced data:
- Combining many new feature layers acquired from many intelligent vehicles solves the accuracy problem that arises when using inaccurate sensors.
2. System Architecture
3. Mapping of the New Feature Layer in an Intelligent Vehicle
3.1. New Feature Layer Mapping Without HD Map
3.1.1. Node
3.1.2. Edge
3.1.3. Solver
3.2. HD Map-Based New Feature Layer Mapping
3.2.1. Node
3.2.2. Edge
3.2.3. Solver
4. Integration of New Feature Layers in a Map Cloud
5. Simulation
5.1. Simulation of Sensors
5.2. Results of Simulation
5.3. Analysis of Sensor Noises
6. Experiment
6.1. Experimental Environment
6.2. Mapping of New Feature Layer
6.3. Localization in HD Map With New Feature Layer
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jo, K.; Kim, J.; Kim, D.; Jang, C.; Sunwoo, M. Development of Autonomous Car—Part I: Distributed System Architecture and Development Process. IEEE Trans. Ind. Electron. 2014, 61, 7131–7140. [Google Scholar] [CrossRef]
- Jo, K.; Kim, J.; Kim, D.; Jang, C.; Sunwoo, M. Development of Autonomous Car—Part II: A Case Study on the Implementation of an Autonomous Driving System Based on Distributed Architecture. IEEE Trans. Ind. Electron. 2015, 62, 5119–5132. [Google Scholar] [CrossRef]
- Seif, H.G.; Hu, X. Autonomous Driving in the iCity—HD Maps as a Key Challenge of the Automotive Industry. Engineering 2016, 2, 159–162. [Google Scholar] [CrossRef]
- Kent, L. HERE Introduces HD Maps for Highly Automated Vehicle Testing. HERE: Amsterdam, The Netherlands. Available online: http://360.here.com/2015/07/20/here-introduces-hd-maps-for-highly-automated-vehicle-testing/ (accessed on 16 April 2018).
- TomTom. TomTom HD Map with RoadDNA. Available online: https://www.tomtom.com/automotive/automotive-solutions/automated-driving/hd-map-roaddna/ (accessed on 16 April 2018).
- Mattern, N.; Schubert, R.; Wanielik, G. High-accurate vehicle localization using digital maps and coherency images. In Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 21–24 June 2010; pp. 462–469. [Google Scholar]
- Schreiber, M.; Knoppel, C.; Franke, U. LaneLoc: Lane marking based localization using highly accurate maps. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 449–454. [Google Scholar]
- Ziegler, J.; Lategahn, H.; Schreiber, M.; Keller, C.; Knoppel, C.; Hipp, J.; Haueis, M.; Stiller, C. Video Based Localization for BERTHA. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Dearborn, MI, USA, 8–11 June 2014; pp. 1231–1238. [Google Scholar]
- Jo, K.; Jo, Y.; Suhr, J.K.; Jung, H.G.; Sunwoo, M. Precise Localization of an Autonomous Car Based on Probabilistic Noise Models of Road Surface Marker Features Using Multiple Cameras. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3377–3392. [Google Scholar] [CrossRef]
- Chen, X.; Hu, W.; Zhang, L.; Shi, Z.; Li, M. Integration of Low-Cost GNSS and Monocular Cameras for Simultaneous Localization and Mapping. Sensors 2018, 18, 2193. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.; Cho, S.; Jeong, S.; Suhr, J.K.; Jung, H.G.; Sunwoo, M. Traffic light recognition exploiting map and localization at every stage. Expert Syst. Appl. 2017, 88, 290–304. [Google Scholar] [CrossRef]
- Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauss, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt, N.; Keller, C.G.; et al. Making Bertha Drive—An Autonomous Journey on a Historic Route. Intell. Transp. Syst. Mag. 2014, 6, 8–20. [Google Scholar] [CrossRef]
- Jo, K.; Lee, M.; Kim, C.; Sunwoo, M. Construction process of a three-dimensional roadway geometry map for autonomous driving. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1414–1434. [Google Scholar] [CrossRef]
- Bender, P.; Ziegler, J.; Stiller, C. Lanelets: Efficient map representation for autonomous driving. In Proceedings of the IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June 2014; pp. 420–425. [Google Scholar]
- Schindler, A.; Tobias, P.; Zweitgutachter, H.; Sauer, T. Vehicle Self-Localization Using High-Precision Digital Maps. In Proceedings of the IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 134–139. [Google Scholar]
- Kim, C.; Jo, K.; Cho, S.; Sunwoo, M. Optimal smoothing based mapping process of road surface marking in urban canyon environment. In Proceedings of the 2017 14th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 25–26 October 2017; pp. 1–6. [Google Scholar]
- Ranganathan, A.; Ilstrup, D.; Wu, T. Light-weight localization for vehicles using road markings. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 921–927. [Google Scholar]
- Qu, X.; Soheilian, B.; Paparoditis, N. Vehicle localization using mono-camera and geo-referenced traffic signs. In Proceedings of the IEEE Intelligent Vehicles Symposium, Seoul, Korea, 28 June–1 July 2015; pp. 605–610. [Google Scholar]
- Puente, I.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P. Review of mobile mapping and surveying technologies. Meas. J. Int. Meas. Confed. 2013, 46, 2127–2145. [Google Scholar] [CrossRef]
- Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2010, 2, 31–43. [Google Scholar] [CrossRef]
- Bailey, T.; Nieto, J.; Guivant, J.; Stevens, M.; Nebot, E. Consistency of the EKF-SLAM algorithm. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3562–3568. [Google Scholar]
- Montemerlo, M.; Thrun, S. FastSLAM 2.0. Springer Tracts Adv. Robot. 2007, 27, 63–90. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation: Kalman, H [infinity] and Nonlinear Approaches; Wiley-Interscience: Hoboken, NJ, USA, 2006; p. 526. [Google Scholar]
- Thrun, S.; Montemerlo, M. The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures. Int. J. Robot. Res. 2006, 25, 403–429. [Google Scholar] [CrossRef] [Green Version]
- Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3607–3613. [Google Scholar]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. In Proceedings of the Robotics: Science and Systems, Seattle, WA, USA, 28 June–1 July 2009; Volume 2, p. 435. [Google Scholar]
- Cheng, W.; Song, Z. Power pole detection based on graph cut. In Proceedings of the 2008. CISP’08. Congress on Image and Signal Processing, Sanya, China, 27–30 May 2008; Volume 3, pp. 720–724. [Google Scholar]
- Mizoguchi, T. Evaluation of Classification Performance of Pole-Like Objects from MMS Images Using Convolutional Neural Network and Image Super Resolution. Int. J. Automob. Technol. 2018, 12, 369–375. [Google Scholar] [CrossRef]
- Cabo, C.; Ordoñez, C.; García-Cortés, S.; Martínez, J. An algorithm for automatic detection of pole-like street furniture objects from Mobile Laser Scanner point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 87, 47–56. [Google Scholar] [CrossRef]
- Cai, H.; Hu, Z.; Huang, G.; Zhu, D.; Su, X. Integration of GPS, Monocular Vision, and High Definition (HD) Map for Accurate Vehicle Localization. Sensors 2018, 18, 3270. [Google Scholar] [CrossRef] [PubMed]
Simulated Sensors | Sensor Noises |
---|---|
Distance of point feature (m) | |
Heading of point feature(deg) | |
Distance of polyline feature (m) | |
Heading of polyline feature (deg) |
Mean (m)/Std. (m) | w/o HD Map | with HD Map | Integration |
---|---|---|---|
Euclidean error | 5.2718/0.6877 | 4.5284/0.6418 | 0.5458/0.3543 |
Lateral error | 0.4651/0.2506 | 0.1825/0.1564 | 0.1184/0.0939 |
Longitudinal error | 5.2445/0.6944 | 4.5220/0.6418 | 0.5181/0.3638 |
RMSE (m) | w/o New Features | With New Features |
---|---|---|
Lateral RMSE | 0.2214 | 0.2077 |
Longitudinal RMSE | 5.4138 | 0.6261 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Cho, S.; Sunwoo, M.; Jo, K. Crowd-Sourced Mapping of New Feature Layer for High-Definition Map. Sensors 2018, 18, 4172. https://doi.org/10.3390/s18124172
Kim C, Cho S, Sunwoo M, Jo K. Crowd-Sourced Mapping of New Feature Layer for High-Definition Map. Sensors. 2018; 18(12):4172. https://doi.org/10.3390/s18124172
Chicago/Turabian StyleKim, Chansoo, Sungjin Cho, Myoungho Sunwoo, and Kichun Jo. 2018. "Crowd-Sourced Mapping of New Feature Layer for High-Definition Map" Sensors 18, no. 12: 4172. https://doi.org/10.3390/s18124172
APA StyleKim, C., Cho, S., Sunwoo, M., & Jo, K. (2018). Crowd-Sourced Mapping of New Feature Layer for High-Definition Map. Sensors, 18(12), 4172. https://doi.org/10.3390/s18124172