A Method for Settlement Detection of the Transmission Line Tower under Wind Force
Abstract
:1. Introduction
2. Principle and Experiments
2.1. Principle
2.2. Experiments
2.2.1. Experimental Tower
2.2.2. Sensor Installation
2.2.3. Real-Time Measurement
2.3. Vibration Analysis
3. Field Test and Discussion
3.1. Experiment and Analysis of Tower Foundation Settlement
3.1.1. Tower Foundation Settlement
3.1.2. Settlement Experiment Analysis
3.2. Influence of Temperature on Modal Frequency
4. Monitoring Technology Realization
4.1. System Structure
4.2. Monitoring Device
4.3. Implementation Process
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, X.B.; Chen, R.G.; Wang, X.J. Online monitoring of tower inclination of transmission line. In Transmission-Line Monitoring and Fault Diagnosis, 2nd ed.; China Electric Power Press: Beijing, China, 2014; pp. 361–370. [Google Scholar]
- Huang, X.B.; Chen, Z.L.; Zhao, L.; Zhu, Y.C.; Xu, G.H.; Si, W.J. Stress simulation and experiment for tower foundation settlement of 110 kV transmission line. Electr. Power Autom. Equip. 2017, 37, 361–370. [Google Scholar]
- Zhang, M.; Zhao, G.; Wang, L.; Li, J. Wind-Induced Coupling Vibration Effects of High-Voltage Transmission Tower-Line Systems. Shock Vib. 2017, 2017, 1205976. [Google Scholar] [CrossRef]
- Battista, R.C.; Rodrigues, R.S.; Pfeil, M.S. Dynamic behavior and stability of transmission line towers under wind forces. J. Wind Eng. Ind. Aerodyn. 2003, 91, 1051–1067. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Wang, J.; Huang, Z.H.; Wu, X.Q.; Meng, X.B. Strain Modal Analysis of Lattice Transmission Tower. J. North China Electr. Power Univ. 2017, 44, 62–70. [Google Scholar]
- Wang, F.; Han, J.K.; Wang, C.C.; Wang, C.Z.; Wong, X.L.; Zhou, Y.Y.; Fang, H. Strong wind simulation of transmission tower structures. Build. Struct. 2018, 48, 39–44. [Google Scholar]
- Fei, Q.G.; Zhou, H.G.; Han, X.L.; Wang, J. Structural health monitoring oriented stability and dynamic analysis of a long-span transmission tower-line system. Eng. Fail. Anal. 2012, 20, 80–87. [Google Scholar] [CrossRef]
- Li, Z.L.; Xiao, Z.Z.; Han, F. Aeroelastic model design and wind tunnel tests of 1000 kV Hanjiang long span transmission line system. Power Syst. Technol. 2008, 32, 1–5. [Google Scholar]
- Malhara, S.; Vittal, V. Mechanical state estimation of overhead transmission lines using tilt sensors. IEEE Trans Power Syst. 2010, 25, 1282–1290. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, P.; Ni, Y.Q.; Zhu, H.P. Deformation monitoring of a super-tall structure using real-time strain data. Eng. Struct. 2014, 67, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.B.; Liao, M.J.; Xu, G.H. Stress monitoring method applying FBG sensor for transmission line towers. Electr. Power Autom. Equip. 2016, 36, 68–72. [Google Scholar]
- Bang, H.; Kim, H.; Lee, K. Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors. Int. J. Prec. Eng. Manuf. 2012, 13, 2121–2126. [Google Scholar] [CrossRef]
- Ding, K. Application of Wavelet Analysis of Curvature Modal to Damage Detection of Bridges. Noise Vib. Control 2013, 33, 131–135. [Google Scholar]
- Huynh, H.C.; Park, J.H.; Kim, J.T. Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring. Measurement 2016, 88, 385–401. [Google Scholar] [CrossRef]
- Ou, Y.W.; Eleni, N.C.; Vasilis, K.D.; Minas, D.S. Vibration-based experimental damage detection of a small-scale wind turbine blade. Struct. Health Monit. 2017, 16, 79–96. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, X.B.; Jia, J.Y.; Zhu, Y.C.; Cao, W. Detection of Broken Strands of Transmission Line Conductors Using Fiber Bragg Grating Sensors. Sensors 2018, 18, 2397. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Wang, J. Optimal placement of biaxial acceleration sensor for transmission towers. Chin. J. Sci. Instrum. 2017, 38, 2200–2209. [Google Scholar]
- Li, H.N.; Bai, H.F.; Yi, Y.H.; Ren, L. Field measurement and quasi-static studies on gust response of transmission tower. J. Vib. Shock 2010, 29, 17–21. [Google Scholar]
- Chang, J.; Zhangi, Q.W.; Sun, L.M. Application of stabilization diagram for modal parameter identification using stochastic subspace method. Eng. Mech. 2007, 24, 39–44. [Google Scholar]
- Sohn, H.; Dzwonczyk, M.; Straser, E.G.; Kiremidjian, A.S.; Law, K.H.; Meng, T. An experimental study of temperature effect on modal parameters of the Alamosa Canyon Bridge. Earthq. Eng. Struct. Dyn. 1999, 28, 879–897. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhao, L.; Chen, Z.; Cheng, L. An online monitoring technology of tower foundation deformation of transmission lines. Struct. Health Monit. 2018. [Google Scholar] [CrossRef]
1st Mode | 2nd Mode | 3rd Mode | 4th Mode | 5th Mode | 6th Mode | 7th Mode | 8th Mode | |
---|---|---|---|---|---|---|---|---|
Test point 1 | 1.538 | 3.987 | 5.227 | 8.006 | 10.590 | 12.100 | 14.030 | 14.830 |
Test point 2 | 1.538 | 3.987 | 5.224 | 8.000 | 10.611 | 12.101 | 14.030 | 14.830 |
Test point 3 | 1.538 | 3.987 | 5.227 | 8.003 | 10.612 | 12.008 | 14.029 | 14.761 |
Average | 1.538 | 3.987 | 5.226 | 8.003 | 10.611 | 12.100 | 14.030 | 14.807 |
1st Mode | 2nd Mode | 3rd Mode | 4th Mode | 5th Mode | 6th Mode | 7th Mode | 8th Mode | |
---|---|---|---|---|---|---|---|---|
Test point 1 | 1.698 | 3.260 | 6.076 | 8.503 | 10.601 | 12.510 | 13.503 | 14.761 |
Test point2 | 1.694 | 3.262 | 6.075 | 8.497 | 10.611 | 12.501 | 13.500 | 14.760 |
Test point 3 | 1.698 | 3.264 | 6.078 | 8.504 | 10.612 | 12.511 | 13.499 | 14.761 |
Average | 1.697 | 3.262 | 6.076 | 8.501 | 10.608 | 12.507 | 13.501 | 14.761 |
1st mode | 1.538 | 1.593 | 3.576 | 1.601 | 4.096 |
2nd mode | 3.987 | 3.859 | 3.217 | 3.724 | 6.596 |
3rd mode | 5.226 | 5.842 | 11.787 | 5.936 | 13.596 |
4th mode | 8.003 | 7.722 | 3.511 | 7.596 | 5.086 |
5th mode | 10.611 | 10.205 | 3.826 | 9.912 | 6.588 |
6th mode | 12.100 | 11.950 | 1.240 | 11.720 | 3.140 |
7th mode | 14.030 | 13.560 | 3.350 | 12.987 | 7.434 |
8th mode | 14.807 | 14.790 | 0.115 | 14.760 | 0.317 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zhao, Y.; Zhao, L.; Yang, L. A Method for Settlement Detection of the Transmission Line Tower under Wind Force. Sensors 2018, 18, 4355. https://doi.org/10.3390/s18124355
Huang X, Zhao Y, Zhao L, Yang L. A Method for Settlement Detection of the Transmission Line Tower under Wind Force. Sensors. 2018; 18(12):4355. https://doi.org/10.3390/s18124355
Chicago/Turabian StyleHuang, Xinbo, Yu Zhao, Long Zhao, and Luya Yang. 2018. "A Method for Settlement Detection of the Transmission Line Tower under Wind Force" Sensors 18, no. 12: 4355. https://doi.org/10.3390/s18124355
APA StyleHuang, X., Zhao, Y., Zhao, L., & Yang, L. (2018). A Method for Settlement Detection of the Transmission Line Tower under Wind Force. Sensors, 18(12), 4355. https://doi.org/10.3390/s18124355