Comparing Two Independent Satellite-Based Algorithms for Detecting and Tracking Ash Clouds by Using SEVIRI Sensor
Abstract
:1. Introduction
2. Background
3. Methods
3.1. RSTASH Algorithm
3.2. London Volcanic Ash Advisory Centers (VAAC) Ash-Detection Method
4. Data
4.1. Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI)
4.2. EOS/Aqua Atmospheric Infrared Sounder (AIRS)
5. Results
5.1. Qualitative Comparison of SEVIRI Ash Products
5.1.1. April 2010
5.1.2. May 2010
5.2. Inter-Comparison of SEVIRI Ash Products
5.3. Quantitative Comparison of Merged SEVIRI Product and AIRS Dust-Detection Algorithm (DDA) Maps
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Global Volcanism Program. Report on Eyjafjallajokull (Iceland). In Bulletin of the Global Volcanism Network, 35:4; Wunderman, R., Ed.; Smithsonian Institution: Washington, DC, USA, 2010. [Google Scholar] [CrossRef]
- Zehner, C. Monitoring volcanic ash from space. In Proceedings of the ESA-EUMETSAT Workshop on the 14 April to 23 May 2010 eruption at Eyjafjöll Volcano, South Iceland, Frascati, Italy, 26–27 May 2010. ESA-Publication STM-280. [Google Scholar] [CrossRef]
- Wall, R.; Flottau, J. Out of the ashes: Rising losses and recriminations rile Europe’s air transport sector. Aviat. Week Space Technol. 2010, 172, 23–25. [Google Scholar]
- Gudmundsson, M.T.; Pedersen, R.; Vogfjörd, K.; Thorbjarnardóttir, B.; Jakobsdóttir, S.; Roberts, M.J. Eruptions of Eyjafjallajökull Volcano, Iceland. Eos Trans. Am. Geophys. Union 2010, AGU 91, 190–191. [Google Scholar] [CrossRef]
- O’Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Martucci, G.; Bialek, J.; Monahan, C.; Berresheima, H.; Vaishya, A.; Grigas, T.; Jennings, S.G.; et al. The Eyjafjallajökull ash plume—Part I: Physical, chemical and optical characteristics. Atmos. Environ. 2012, 48, 129–142. [Google Scholar] [CrossRef]
- Francis, P.N.; Cooke, M.C.; Saunders, R.W. Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajökull eruption. J. Geophys. Res. 2012, 117, D00U09. [Google Scholar] [CrossRef]
- Cooke, M.C.; Francis, P.N.; Millington, S.; Saunders, R.; Witham, C. Detection of the Grímsvötn 2011 volcanic eruption plumes using infrared satellite measurements. Atmos. Sci. Lett. 2014, 15, 321–327. [Google Scholar] [CrossRef]
- Pergola, N.; Tramutoli, V.; Scaffidi, I.; Lacava, T.; Marchese, F. Improving volcanic ash clouds detection by a robust satellite technique. Remote Sens. Environ. 2004, 90, 1–22. [Google Scholar] [CrossRef]
- Filizzola, C.; Lacava, T.; Marchese, F.; Pergola, N.; Scaffidi, I.; Tramutoli, V. Assessing RAT (Robust AVHRR Technique) performances for volcanic ash cloud detection and monitoring in near real-time: The 2002 eruption of Mt. Etna (Italy). Remote Sens. Environ. 2007, 107, 440–454. [Google Scholar] [CrossRef]
- Marchese, F.; Malvasi, G.; Ciampa, M.; Filizzola, C.; Pergola, N.; Tramutoli, V. A robust multitemporal satellite technique for volcanic activity monitoring: Possible impacts on volcanic hazard mitigation. In Proceedings of the International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007; pp. 1–5. [Google Scholar] [CrossRef]
- Marchese, F.; Ciampa, M.; Filizzola, C.; Mazzeo, G.; Lacava, T.; Pergola, N.; Tramutoli, V. On the exportability of Robust Satellite Techniques (RST) for active volcanoes monitoring. Remote Sens. 2010, 2, 1575–1588. [Google Scholar] [CrossRef]
- Marchese, F.; Tramutoli, V.; Pergola, N.; Filizzola, C.; Falconieri, A. Implementation of a Robust Satellite Technique (RSTASH) on MSG-SEVIRI data for real time detection and monitoring of volcanic ash clouds from space. In Proceedings of the EUMETSAT Meteorological Satellite Conference & 19th American Meteorological Society (AMS) Satellite Meteorology, Oceanography, and Climatology Conference, Vienna, Austria, 16–20 September 2013. [Google Scholar]
- Prata, A.J. Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int. J. Remote Sens. 1989, 10, 751–761. [Google Scholar] [CrossRef]
- Dean, K.G.; Dehn, J.; Papp, K.; Smith, S.; Izbekov, P.; Peterson, R.; Kearney, C.; Steffke, A. Integrated satellite observations of the 2001 eruption of Mt Cleveland Alaska. J. Volcanol. Geotherm. Res. 2003, 135, 51–73. [Google Scholar] [CrossRef]
- Andronico, D.; Spinetti, C.; Cristaldi, A.; Buongiorno, M.F. Observations of Mt Etna volcanic ash clouds in 2006: An integrated approach from ground-base and polar satellite NOAA–AVHRR monitoring system. J. Volcanol. Geotherm. Res. 2009, 180, 135–147. [Google Scholar] [CrossRef]
- Prata, A.J.; Prata, A.T. Eyjafajallajökull volcanic ash concentrations determined using spin enhanced visible and infrared imager measurements. J. Geophys. Res. 2012, 117, D00U23. [Google Scholar] [CrossRef]
- Webley, P.W.; Lopez, T.M.; Ekstrand, A.L.; Dean, K.G.; Rinkleff, P.; Dehn, J.; Cahill, C.F.; Wessels, R.L.; Bailey, J.E.; Izbekov, P.; et al. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano. J. Volcanol. Geotherm. Res. 2013, 259, 185–200. [Google Scholar] [CrossRef]
- Prata, A.J. Radiative transfer calculations for volcanic ash clouds. Geophys. Res. Lett. 1989, 16, 1293–1296. [Google Scholar] [CrossRef]
- Webley, P.W.; Dehn, J.; Lovick, J.; Dean, K.G.; Bailey, J.E.; Valcic, L. Near real time volcanic ash cloud detection: Experiences from the Alaska volcano observatory. J. Volcanol. Geotherm. Res. 2009, 186, 79–90. [Google Scholar] [CrossRef]
- Simpson, J.J.; Hufford, G.; Pieri, D.; Berg, J. Failures in Detecting Volcanic Ash from a Satellite-Based Technique. Remote Sens. Environ. 2000, 72, 191–217. [Google Scholar] [CrossRef]
- Simpson, A.J.J.; Hufford, G.; Pieri, D.; Berg, J. Response to Comments of Failures in detecting volcanic ash from a satellite-based technique. Remote Sens. Environ. 2001, 78, 347–357. [Google Scholar] [CrossRef]
- Prata, A.J.; Bluth, G.J.S.; Rose, W.I.; Schneider, D.J.; Tupper, A.C. Comments on “Failures in detecting volcanic ash from a satellite-based technique”. Remote Sens. Environ. 2001, 78, 341–346. [Google Scholar] [CrossRef]
- Prata, A.J.; Grant, F. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt Ruapehu, New Zealand. Q. J. R. Meteorol. Soc. 2001, 127, 2153–2179. [Google Scholar] [CrossRef]
- Yu, T.; Rose, W.I.; Prata, A.J. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using split window IR data from GOES and AVHRR. J. Geophys. Res. 2002, 107, 4311. [Google Scholar] [CrossRef]
- Ellrod, G.P.; Connell, B.H.; Hillger, D.W. Improved detection of airborne volcanic ash using multispectral infrared satellite data. J. Geophys. Res. 2003, 108, 4356. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Wayne, F.F.; Heidinger, A.K.; Gallina, G.M. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J. Atmos. Ocean. Technol. 2006, 23, 1422–1444. [Google Scholar] [CrossRef]
- Naeger, A.R.; Christopher, S.A. The identification and tracking of volcanic ash using the Meteosat Second Generation (MSG) spinning enhanced visible and infrared imager. Atmos. Meas. Tech. 2014, 7, 581–597. [Google Scholar] [CrossRef]
- Guéhenneux, Y.; Gouhier, M.; Labazuy, P. Improved space borne detection of volcanic ash for real-time monitoring using 3-Band method. J. Volcanol. Geotherm. Res. 2015, 293, 25–45. [Google Scholar] [CrossRef]
- Yin, J.Y.; Dong, J.S.; Li, C.F.; Zhao, J.J. A new detection method of volcanic ash cloud based on MODIS image. J. Indian Soc. Remote. 2015, 43, 429–437. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Le Borgne, P.; Bellec, B. Saharan dust in nighttime thermal imagery: Detection and reduction of related biases in retrieved sea surface temperature. Remote Sens. Environ. 2006, 104, 15–30. [Google Scholar] [CrossRef]
- Taylor, I.; Mackie, S.; Watson, M. Investigating the use of the Saharan dust index as a tool for the detection of volcanic ash in SEVIRI imagery. J. Volcanol. Geotherm. Res. 2015, 304, 126–141. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, K.T.; Chung, S.R. Time-resolved observation of volcanic ash using COMS/MI: A case study from the 2011 Shinmoedake eruption. Remote Sens. Environ. 2016, 173, 122–132. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.; Lei, Y.; Yin, J.; Zhao, J. Volcanic ash cloud detection from MODIS image based on CPIWS method. Acta Geophys. 2017, 65, 151–163. [Google Scholar] [CrossRef]
- Tramutoli, V. Robust Satellite Techniques (RST) for Natural and Environmental Hazards Monitoring and Mitigation: Theory and Applications. In Proceedings of the 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007; pp. 1–6. [Google Scholar]
- Piscini, A.; Corradini, S.; Marchese, F.; Merucci, L.; Pergola, N.; Tramutoli, V. Volcanic ash cloud detection from space: A comparison between RSTASH technique and water vapour corrected BTD procedure. Geomat. Nat. Hazards Risk 2011, 2, 263–277. [Google Scholar] [CrossRef]
- Marchese, F.; Corrado, R.; Genzano, N.; Mazzeo, G.; Paciello, R.; Pergola, N.; Tramutoli, V. Assessment of the robust satellite technique (RST) for volcanic ash plume identification and tracking. In Proceedings of the Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, Naples, Italy, 11–14 November 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Marchese, F.; Filizzola, C.; Mazzeo, G.; Pergola, N.; Sannazzaro, F.; Tramutoli, V. Assessment and validation in time domain of a Robust Satellite Technique (RSTASH) for ash cloud detection. Geomat. Nat. Hazards Risk 2011, 2, 247–262. [Google Scholar] [CrossRef]
- Marchese, F.; Falconieri, A.; Pergola, N.; Tramutoli, V. A retrospective analysis of Shinmoedake (Japan) eruption of 26-27 January 2011 by means of Japanese geostationary satellite data. J. Volcanol. Geotherm. Res. 2014, 269, 1–13. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Sieglaff, J. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Volcanic Ash: Detection and Height; Version 2.0. Report; NOAA: Silver Spring, MD, USA, 2010; p. 72. Available online: http://www.goes-r.gov/products/ATBDs/baseline/Aviation_VolAsh_v2.0_no_color.pdf (accessed on 15 September 2010).
- Pavolonis, M.J. Advances in extracting cloud composition information from spaceborne infrared radiances: A robust alternative to brightness temperatures. Part I: Theory. J. Appl. Meteorol. Climatol. 2010, 49, 1992–2012. [Google Scholar] [CrossRef]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An Introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Lutz, H.J. Cloud Detection for MSG—Algorithm Theoretical Basis Document (ATBD); EUM/MET/REP/07/0132 v2; The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT): Darmstadt, Germany, 2007; Volume 2. [Google Scholar]
- EUMETSAT. Cloud Mask Factsheet, EUM/OPS/DOC/09/5164. EUMETSAT, Ed.; Darmstad, Germany, October 2010.
- Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C.; Tramutoli, V. A self-sufficient approach for GERB cloudy radiance detection. Atmos. Res. 2004, 72, 39–56. [Google Scholar] [CrossRef]
- EUMETSAT. MSG Meteorological Products Extraction Facility Algorithm Specification Document-EUM/MSG/SPE/022, v5B. Darmstad, Germany, September 2011. [Google Scholar]
- Carn, S.A.; Strow, L.L.; de Souza-Machado, S.; Edmonds, Y.; Hannon, S. Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption of Mt. Etna (Italy). Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Clarisse, L.; Prata, F.; Lacour, J.L.; Hurtmans, D.; Clerbaux, C.; Coheur, P.F. A correlation method for volcanic ash detection using hyperspectral infrared measurements. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Clarisse, L.; Coheur, P.F.; Prata, F.; Hadji-Lazaro, J.; Hurtmans, D.; Clerbaux, C. A unified approach to infrared aerosol remote sensing and type specification. Atmos. Chem. Phys. 2013, 13, 2195–2221. [Google Scholar] [CrossRef] [Green Version]
- DeSouza-Machado, S.; Strow, L.L.; Imbiriba, B.; McCann, K.; Hoff, R.; Hannon, S.; Martins, J.; Tanré, D.; Deuzé, J.; Ducos, F.; et al. Infrared retrievals of dust using AIRS: Comparisons of optical depths and heights derived for a North African dust storm to other collocated EOS A-Train and surface observations. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- NASA GES DISC, 2017. Earthdata NASA, GES-DISC, Mirador Data Access Made Simple. Available online: https://mirador.gsfc.nasa.gov/ (accessed on 3 October 2016).
- DeSouza-Machado, S.; Strow, L.; Maddy, E.; Torres, O.; Thomas, G.; Grainger, D.; Robinson, A. A novel retrieval of daytime atmospheric dust and volcanic ash heights through a synergy of AIRS infrared radiances and MODIS L2 optical depths. Atmos. Meas. Tech. Discuss. 2015, 8, 443–485. [Google Scholar] [CrossRef]
- Langmann, B.; Folch, A.; Hensch, M.; Matthias, V. Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010. Atmos. Environ. 2012, 48, 1–8. [Google Scholar] [CrossRef]
- Dellino, P.; Gudmundsson, M.T.; Larsen, G.; Mele, D.; Stevenson, J.A.; Thordarson, T.; Zimanowski, B. Ash from the Eyjafjallajökull eruption (Iceland): Fragmentation processes and aerodynamic behavior. J. Geophys. Res. Solid Eart. 2012, 117. [Google Scholar] [CrossRef]
- Gudmundsson, M.T.; Thordarson, T.; Höskuldsson, Á.; Larsen, G.; Björnsson, H.; Prata, F.J.; Oddsson, B.; Magnússon, E.; Högnadóttir, T.; Nína Petersen, G.; et al. Ash generation and distribution from the April–May 2010 eruption of Eyjafjallajökull, Iceland. Sci. Rep. 2012, 2, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Volcanism Program, 2011. Report on Eyjafjallajokull (Iceland). In Bulletin of the Global Volcanism Network, 36:4; Wunderman, R., Ed.; Smithsonian Institution: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Support to Aviation Control Service (SACS). 2017. Available online: http://sacs.aeronomie.be/ (accessed on 18 March 2017).
- Thomas, E.; Prata, A.J. Sulphur dioxide as a volcanic ash proxy during the April–May 2010 eruption of Eyjafjallajökull Volcano, Iceland. Atmos. Chem. Phys. 2011, 11, 6871–6880. [Google Scholar] [CrossRef] [Green Version]
- QGIS A Free and Open Source Geographic Information System. Available online: https://www.qgis.org/en/site/ (accessed on 25 February 2017).
London VAAC Detections | RSTASH Detections | A. Common Detections | B. London VAAC Only Detections | C. RSTASH Only Detections | Total Detections (A + B + C) | |||
---|---|---|---|---|---|---|---|---|
April 2010 | ||||||||
16 April 2010 | 00:00 UTC | Confirmed | 302 | 912 | 140 | 162 | 772 | 1074 |
Total | 1258 | 922 | 140 | 1118 | 782 | 2040 | ||
17 April 2010 | 12:00 UTC | Confirmed | 406 | 362 | 152 | 254 | 210 | 616 |
Total | 1025 | 446 | 152 | 873 | 294 | 1319 | ||
19 April 2010 | 12:00 UTC | Confirmed | 370 | 230 | 105 | 265 | 125 | 495 |
Total | 670 | 237 | 105 | 565 | 132 | 802 | ||
May 2010 | ||||||||
7 May 2010 | 06:00 UTC | Confirmed | 7567 | 6002 | 5563 | 2004 | 439 | 8006 |
Total | 7676 | 6451 | 5563 | 2113 | 888 | 8564 | ||
16 May 2010 | 06:00 UTC | Confirmed | 2157 | 6252 | 1945 | 212 | 4307 | 6464 |
Total | 2591 | 6335 | 1945 | 646 | 4390 | 6981 |
Date [DD MM YYYY] | Time [hh:mm] (UTC) | RSTASH Contribution | VAAC Contribution | Common Contribution |
---|---|---|---|---|
April 2010 | ||||
16 April 2010 | 00:00 | 72% | 15% | 13% |
17 April 2010 | 12:00 | 34% | 41% | 25% |
19 April 2010 | 12:00 | 25% | 54% | 21% |
May 2010 | ||||
7 May 2010 | 06:00 | 5% | 25% | 70% |
16 May 2010 | 06:00 | 67% | 3% | 30% |
DATE | AIRS (UTC; hh:mm:ss) | SEVIRI (UTC; hh:mm) |
---|---|---|
16 April 2010 | 01:17:24 | 01:15 |
17 April 2010 | 13:17:24 | 13:15 |
19 April 2010 | 13:05:24 | 13:00 |
7 May 2010 | 03:11:24 | 03:15 |
03:17:24 | ||
16 May 2010 | 03:05:25 | 03:15 |
03:11:24 |
DATE | SEVIRI Areas (km2 × 103) | AIRS Areas (km2 × 103) | Common Areas (CA) (km2 × 103) |
---|---|---|---|
16 April 2010 | 73.75 | 121.89 | 52.56 (43%) |
17 April 2010 | 44.62 | 54.45 | 23.11 (42%) |
19 April 2010 | 46.08 | 83.98 | 22.97 (27%) |
7 May 2010 | 299.82 | 345.97 | 255.95 (74%) |
16 May 2010 | 182.76 | 329.43 | 122.91 (37%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falconieri, A.; Cooke, M.C.; Filizzola, C.; Marchese, F.; Pergola, N.; Tramutoli, V. Comparing Two Independent Satellite-Based Algorithms for Detecting and Tracking Ash Clouds by Using SEVIRI Sensor. Sensors 2018, 18, 369. https://doi.org/10.3390/s18020369
Falconieri A, Cooke MC, Filizzola C, Marchese F, Pergola N, Tramutoli V. Comparing Two Independent Satellite-Based Algorithms for Detecting and Tracking Ash Clouds by Using SEVIRI Sensor. Sensors. 2018; 18(2):369. https://doi.org/10.3390/s18020369
Chicago/Turabian StyleFalconieri, Alfredo, Michael C. Cooke, Carolina Filizzola, Francesco Marchese, Nicola Pergola, and Valerio Tramutoli. 2018. "Comparing Two Independent Satellite-Based Algorithms for Detecting and Tracking Ash Clouds by Using SEVIRI Sensor" Sensors 18, no. 2: 369. https://doi.org/10.3390/s18020369
APA StyleFalconieri, A., Cooke, M. C., Filizzola, C., Marchese, F., Pergola, N., & Tramutoli, V. (2018). Comparing Two Independent Satellite-Based Algorithms for Detecting and Tracking Ash Clouds by Using SEVIRI Sensor. Sensors, 18(2), 369. https://doi.org/10.3390/s18020369