A Refined Crop Drought Monitoring Method Based on the Chinese GF-1 Wide Field View Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Region
2.2. Data and Preprocessing
2.2.1. Satellite Data
2.2.2. Field Data
2.2.3. Auxiliary Data
3. Methodology
3.1. Soil Lines Determination
3.2. Candidate Vegetation Indices
3.3. GF-1 WFV-Based MPDIs
4. Results
4.1. Quantitative Analysis of the Soil Lines
4.2. Preferred MPDI Model
4.3. Results of EVI2-Based MPDI
4.4. Validation of EVI2-Based MPDI
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Funding
References
- Goddard, S.; Harms, S.; Reichenbach, S.; Tadesse, T.; Waltman, W. Geospatial decision support for drought risk management. Commun. ACM 2003, 46, 35–37. [Google Scholar] [CrossRef]
- You, M.T. The Loss of Drought Should Be Transferred through Insurance. 2009. Available online: http://finance. ifeng.com/money/insurance/hydt/20091128/1518883.shtml (accessed on 28 November 2009).
- Zhou, J. Drought and its economic loss in China. J. Disaster Sci. 1993, 8, 45–49. (In Chinese) [Google Scholar]
- Fan, Y.D.; Wen, Q.; Wang, W.; Wang, P.; Li, L.L.; Zhang, P. Quantifying Disaster Physical Damage Using Remote Sensing Data—A Technical Work Flow and Case Study of the 2014 Ludian Earthquake in China. Int. J. Disaster Risk Sci. 2017, 8, 471–488. [Google Scholar] [CrossRef]
- Bai, Z. Technology of characters of GF-1 satellite. Aerosp. China 2013, 8, 5–9. (In Chinese) [Google Scholar]
- Dong, F. Chinese high resolution satellites and its application. Satell. Appl. 2015, 3, 44–48. (In Chinese) [Google Scholar]
- Lu, C.; Wang, R.; Yin, H. GF-1 satellite remote sensing characters. Spacecr. Recovery Remote Sens. 2014, 35, 67–73. (In Chinese) [Google Scholar]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background infonnation, Photogram. Eng. Remote Sens. 1977, 43, l511–1542. [Google Scholar]
- Ghulam, A.; Qin, Q.; Zhan, Z. Designing of the perpendicular drought index. Environ. Geol. 2007, 52, 1045–1052. [Google Scholar] [CrossRef]
- Qin, Q.; Ghulam, A.; Zhu, L.; Wang, L.; Li, J.; Nan, E. Evaluation of MODIS derived perpendicular drought index for estimation of surface dryness over northwestern China. Int. J. Remote Sens. 2008, 29, 1983–1995. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, J.; Zhang, Y.P.; Wang, M. Application of FY-3A/MERSI satellite data to drought monitoring in north China. J. Remote Sens. 2010, 14, 1004–1016. [Google Scholar]
- Chen, S.; Sun, H.; Zhang, B.J. Application research and implementation of drought monitoring by HJ-1A/1B satellites. Spacecr. Eng. 2009, 18, 138–141. [Google Scholar]
- Jiang, Y.; Han, T.; Xu, Y.; Wang, X.; Wang, D. Comparison of three drought indices based on multi-source satellite data. Agric. Res. Arid Areas 2014, 32–47. [Google Scholar]
- Ghulam, A.; Qin, Q.; Teyip, T.; Li, Z.L. Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS J. Photogramm. Remote Sens. 2007, 62, 150–164. [Google Scholar] [CrossRef]
- Feng, H.; Qin, Q.; Jiang, H.; Dong, H.; Zhang, N.; Wang, J.; Liu, M. Drought monitoring based on HJ-1A/1B CCD data. Trans. CSAE 2011, 27 (Supp. 1), 358–365, (In Chinese with English Abstract). [Google Scholar]
- Shahabfar, A.; Eitzinger, J. Different responses of MODIS-derived drought indices in a variety of agroclimatic conditions. In Impact of Climate Change and Adaptation in Agriculture, Proceedings of the International Symposium, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria, 22–23 June 2009; BOKU-Met Report 17; Eitzinger, J., Kubu, G., Eds.; BOKU: Vienna, Austria, 2009; pp. 140–143. Available online: http://www.adagio-eu.org/documents/BOKU_Met_Report_17.pdf (accessed on 17 November 2010).
- Alireza, S.; Abduwasit, G.; Josef, E. Drought monitoring in Iran using the perpendicular drought indices. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 119–127. [Google Scholar]
- Zhang, J.; Zhou, Z.; Yao, F.; Yang, L.; Hao, C. Validation the Modified Perpendicular Drought Index in the North China Region Using In Situ Soil Moisture Measurement. IEEE Geosci. Remote Sens. Lett. 2015, 12, 542–546. [Google Scholar] [CrossRef]
- Li, Z.; Tan, D. A modified perpendicular drought index in NIR-Red reflectance space. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012040. [Google Scholar] [CrossRef]
- Land Observation Satellite Data Service Platform. Available online: http://218.247.138.121/DSSPlatform/index.html (accessed on 10 December 2017).
- Perkins, T.; Adler-Golden, S.; Matthew, M.W.; Berk, A.; Bernstein, L.S.; Lee, J.; Fox, M. Speed and accuracy improvements in FLAASH atmospheric correction of hyper-spectral imagery. Opt. Eng. 2012, 51, 111707. [Google Scholar] [CrossRef]
- China Meteorological Data Service Center. Available online: http://data.cma.cn/data/detail/dataCode/A.0012.0001.html (accessed on 10 December 2017).
- Liaoning Provincial Department of Water Resources. Available online: http://www.lnwater.gov.cn/ (accessed on 23 November 2015).
- Harmonized World Soil Database (HWSD) v 1.2. Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 15 April 2017).
- The Precipitation Data Used in this Research is the Climate Hazards Group Infrared Precipitation with Stations Dataset (CHIRPS). Available online: ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_dekad/ (accessed on 16 February 2018).
- Funk, C.; Verdin, J.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.; Landsfeld, M.; Shukla, S.; Rowland, J.; Harrison, L.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G. A global satellite-assisted precipitation climatology. Earth Syst. Sci. Data 2015, 7, 275–287. [Google Scholar] [CrossRef]
- Verdin, A.; Funk, C.; Rajagopalan, B.; Kleiber, W. Kriging and Local Polynomial Methods for Blending Satellite-Derived and Gauge Precipitation Estimates to Support Hydrologic Early Warning Systems. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2552–2562. [Google Scholar] [CrossRef]
- Liebmann, B.; Bladé, I.; Funkd, C.; Allured, D.; Quan, X.-W.; Hoerling, M.; Hoell, A.; Peterson, P.; Wassila, M.T. Climatology and Interannual Variability of Boreal Spring Wet Season Precipitation in the Eastern Horn of Africa and Implications for Its Recent Decline. Am. Meteorol. Soc. 2017. [Google Scholar] [CrossRef]
- Uhe, P.; Philip, S.; Kew, S.; Shah, K.; Kimutai, J.; Mwangi, E.; van Oldenborgh, G.J.; Singh, R.; Arrighi, J.; Jjemba, E.; et al. Attributing drivers of the 2016 Kenyan drought. Int. J. Climatol. 2017. [Google Scholar] [CrossRef]
- Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al. Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sens. 2015, 7, 3907–3933. [Google Scholar] [CrossRef]
- CropWatch Bulletin and System. Available online: http://123.56.103.213:8080/ (accessed on 10 November 2017).
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Final Rep. RSC 1978-4; Remote Sensing Center, Texas A&M University: College Station, TX, USA, 1974. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M.M. GEMI: A non-linear index to monitor global vegetation from satellite. Vegetation 1992, 101, 15–20. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A.R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Baret, F.; Clevers, J.G.P.W.; Steven, M.D. The robustness of canopy gap fraction estimations from red and near-infrared reflectances: A comparison of approaches. Remote Sens. Environ. 1995, 54, 14–151. [Google Scholar] [CrossRef]
- Gao, Z.H.; Li, Z.Y.; Wei, H.D.; Ding, F.; Ding, G.D. Study on the Suitability of Vegetation Indices (VI) in Arid Area. J. Desert Res. 2006, V26, 243–248. [Google Scholar]
- Huete, A.; Dian, K.; Shimabokuro, Y.; Ferreira, L.; Rodriguez, E. Regional Amazon basin and global analysis of MODIS vegetation indices: Early results and coparisons with AVHRR. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; pp. 536–538. [Google Scholar]
- Wang, C.Y.; Luo, C.F.; Qi, S.H.; Niu, Z. A method of land cover classification for China based on NDVI-Ts space. J. Remote Sens. 2005, 9, 93–99. [Google Scholar]
- Wang, S.-P.; Duan, H.-X.; Feng, J.-Y. Drought Disasters and Their Causes in autumn of 2014 in China. Period Arid Meteorol. 2014, 32, 1031–1039. (In Chinese) [Google Scholar]
- Wang, Z.X.; Liu, C.; Huete, A.R. From AVHRR-NDVI to MODIS-EVI: Advances in vegetation index research. Acta Ecol. Sin. 2003, 23, 979–987. [Google Scholar]
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 506–512. [Google Scholar] [CrossRef]
- Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [Google Scholar] [CrossRef]
- Jiapaer, G.; Chen, X.; Bao, A. A comparison of methods for estimating fractional vegetation cover in arid regions. Agric. For. Meteorol. 2011, 151, 1698–1710. [Google Scholar] [CrossRef]
Bands No. | Spectral Range | Spatial Resolution | Width | Revisit Period | Transit Time |
---|---|---|---|---|---|
1 | 0.45–0.52 | 16 m | 800 km | 4 days | 10:30 a.m. |
2 | 0.52–0.59 | ||||
3 | 0.63–0.69 | ||||
4 | 0.77–0.89 |
Transit Time | Scene No. | Data Information |
---|---|---|
2013/05/20 | 1 | GF1_WFV1_E121.9_N41.3_20130520_L1A0000046801.hdf |
2013/06/01 | 1 | GF1_WFV1_E121.2_N41.3_20130601_L1A0000020121.hdf |
2013/06/13 | 1 | GF1_WFV1_E121.4_N41.3_20130613_L1A0000028258.hdf |
2013/07/12 | 3 | GF1_WFV3_E123.5_N42.2_20130712_L1A0000053576.hdf GF1_WFV2_E121.3_N42.6_20130712_L1A0000052402.hdf GF1_WFV2_E120.8_N41.0_20130712_L1A0000052403.hdf |
2013/08/09 | 1 | GF1_WFV1_E121.2_N41.4_20130809_L1A0000067755.hdf |
2013/08/30 | 1 | GF1_WFV4_E121.4_N41.8_20130830_L1A0000077556.hdf |
2013/09/03 | 1 | GF1_WFV4_E121.6_N41.8_20130903_L1A0000079519.hdf |
2013/09/11 | 2 | GF1_WFV3_E121.6_N42.2_20130911_L1A0000082577.hdf GF1_WFV3_E121.0_N40.5_20130911_L1A0000082578.hdf |
2013/09/15 | 2 | GF1_WFV4_E122.2_N41.8_20130915_L1A0000084339.hdf GF1_WFV4_E121.6_N40.1_20130915_L1A0000084340.hdf |
2014/05/08 | 1 | GF1_WFV1_E120.9_N41.3_20140508_L1A0000220193.hdf |
2014/05/21 | 2 | GF1_WFV3_E121.6_N42.2_20140521_L1A0000231625.hdf GF1_WFV3_E121.1_N40.6_20140521_L1A0000231626.hdf |
2014/06/23 | 4 | GF1_WFV4_E122.9_N41.8_20140623_L1A0000258242.hdf GF1_WFV4_E122.3_N40.1_20140623_L1A0000258243.hdf GF1_WFV3_E120.6_N42.2_20140623_L1A0000258228.hdf GF1_WFV3_E120.0_N40.6_20140623_L1A0000258229.hdf |
2014/07/01 | 2 | GF1_WFV3_E121.8_N42.2_20140701_L1A0000264733.hdf GF1_WFV3_E121.2_N40.6_20140701_L1A0000265941.hdf |
2014/07/10 | 1 | GF1_WFV4_E119.3_N41.8_20140710_L1A0000271938.hdf |
2014/07/29 | 1 | GF1_WFV1_E121.5_N41.3_20140729_L1A0000289542.hdf |
2014/08/02 | 1 | GF1_WFV1_E121.6_N41.3_20140802_L1A0000293356.hdf |
2014/08/11 | 2 | GF1_WFV3_E121.7_N42.2_20140811_L1A0000301287.hdf GF1_WFV3_E121.2_N40.6_20140811_L1A0000301288.hdf |
2014/09/04 | 2 | GF1_WFV2_E122.7_N41.0_20140904_L1A0000327811.hdf GF1_WFV1_E120.4_N41.3_20140904_L1A0000327798.hdf |
2014/09/08 | 1 | GF1_WFV1_E121.9_N41.3_20140908_L1A0000336275.hdf |
2014/09/17 | 1 | GF1_WFV3_E121.1_N42.2_20140917_L1A0000344707.hdf |
Name of Indices | Authors | Formula |
---|---|---|
Normalized difference vegetation index (NDVI) | Rouse et al., 1974 [33] | |
Perpendicular vegetation index (PVI) | Richardson & Wiegand, 1977 [2] | |
Soil adjusted vegetation index (SAVI) | Huete et al., 1988 [34] | |
Modified soil adjusted vegetation index (MSAVI) | Qi et al., 1994 [35] | |
Transformed soil adjusted vegetation index (TSAVI) | Baret, F. and Guyot, G., 1991 [36] | |
Global environment monitoring index (GEMI) | Pinty, B. and Verstraete, M., 1992 [37] | , |
Enhanced vegetation index (EVI) | Liu, H.Q., Huete, A.R., 1995 [38] | |
Two-band enhanced vegetation index (EVI2) | Jiang et al., 2008 [39] |
Pearson’s Correlation Coefficient (R) | MPDI_gemi | MPDI_msavi | MPDI_ndvi | MPDI_pvi | MPDI_savi | MPDI_tsavi | MPDI_evi | MPDI_evi2 |
---|---|---|---|---|---|---|---|---|
Heishan_station | −0.68 | −0.67 | −0.67 | −0.61 | −0.63 | −0.64 | −0.71 | −0.73 |
Jinzhou_station | −0.66 | −0.64 | −0.66 | −0.56 | −0.53 | −0.54 | −0.70 | −0.70 |
Drought Class | MPDI from Former Publishes | EVI2-Based MPDI in This Paper |
---|---|---|
Severe drought | >0.4 | >0.4 |
Moderate drought | - | 0.35–0.4 |
Mild drought | 0.3–0.4 | 0.3–0.35 |
Normal | 0–0.3 | 0–0.3 |
Comparison Items | Drought-Affected Crop Area from LNDWR (Thousand ha) | Drought-Affected Crop Area from MPDI_evi2 (Thousand ha) | Bias * | Percentage ** (%) |
---|---|---|---|---|
Jinzhou | 15.5 | 12.1 | −3.4 | −21.8 |
Beizhen | 16.7 | 18.6 | 1.9 | 11.6 |
Heishan | 30.0 | 34.4 | 4.4 | 14.7 |
Yi | 32.3 | 34.1 | 1.8 | 5.7 |
Linghai | 43.3 | 44.8 | 1.5 | 3.5 |
Jinzhou region | 137.7 | 147.0 | 9.3 | 4.6 |
Severe drought in the Jinzhou region | 43.3 | 32.6 | −10.7 | −24.7 |
Moderate drought in the Jinzhou region | 29.3 | 31.7 | 2.4 | 8.1 |
Slight drought in the Jinzhou region | 65.1 | 82.7 | 17.6 | 27.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.; Wu, B.; Yan, N.; Zhu, J.; Wen, Q.; Xu, F. A Refined Crop Drought Monitoring Method Based on the Chinese GF-1 Wide Field View Data. Sensors 2018, 18, 1297. https://doi.org/10.3390/s18041297
Chang S, Wu B, Yan N, Zhu J, Wen Q, Xu F. A Refined Crop Drought Monitoring Method Based on the Chinese GF-1 Wide Field View Data. Sensors. 2018; 18(4):1297. https://doi.org/10.3390/s18041297
Chicago/Turabian StyleChang, Sheng, Bingfang Wu, Nana Yan, Jianjun Zhu, Qi Wen, and Feng Xu. 2018. "A Refined Crop Drought Monitoring Method Based on the Chinese GF-1 Wide Field View Data" Sensors 18, no. 4: 1297. https://doi.org/10.3390/s18041297
APA StyleChang, S., Wu, B., Yan, N., Zhu, J., Wen, Q., & Xu, F. (2018). A Refined Crop Drought Monitoring Method Based on the Chinese GF-1 Wide Field View Data. Sensors, 18(4), 1297. https://doi.org/10.3390/s18041297