Hypersensitivity and Applications of Cladding Modes of Optical Fibers Coated with Nanoscale Metal Layers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bare TFBG Properties
3.2. Chemical Vapor Deposition of Copper Coatings
3.3. Chemical Vapor Deposition of Gold Coatings
3.4. Electroless Gold Plated Coatings
3.5. Chemical Sensing Enhancements from Thin Metal Coatings
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Homola, J. Surface Plasmon Resonance Based Sensors; Springer: New York, NY, USA, 2006; ISBN 978-3-540-33919-9. [Google Scholar]
- Spackova, B.; Wrobel, P.; Bocková, M.; Homola, J. Optical Biosensors Based on Plasmonic Nanostructures: A Review. Proc. IEEE 2016, 104, 2380–2408. [Google Scholar] [CrossRef]
- Couture, M.; Zhao, S.S.; Masson, J.F. Modern surface plasmon resonance for bioanalytics and biophysics. Phys. Chem. Chem. Phys. 2013, 15, 11190. [Google Scholar] [CrossRef] [PubMed]
- Ciracì, C.; Hill, R.T.; Mock, J.J.; Urzhumov, Y.; Fernández-Domínguez, A.I.; Maier, S.A.; Pendry, J.B.; Chilkoti, A.; Smith, D.R. Probing the ultimate limits of plasmonic enhancement. Science 2012, 337, 1072–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caucheteur, C.; Guo, T.; Albert, J. Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection. Anal. Bioanal. Chem. 2015, 407, 3883–3897. [Google Scholar] [CrossRef] [PubMed]
- Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photonics 2009, 1, 484–588. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Doherty, B.; Thiele, M.; Warren-Smith, S.; Schartner, E.; Ebendorff-Heidepriem, H.; Fritzsche, W.; Schmidt, M.A. Plasmonic nanoparticle-functionalized exposed-core fiber—An optofluidic refractive index sensing platform. Opt. Lett. 2017, 42, 4395–4398. [Google Scholar] [CrossRef] [PubMed]
- Lepinay, S.; Staff, A.; Ianoul, A.; Albert, J. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles. Biosens. Bioelectron. 2014, 52, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Bialiayeu, A.; Bottomley, A.; Prezgot, D.; Ianoul, A.; Albert, J. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings. Nanotechnology 2012, 23, 444012. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Mandia, D.J.; Griffiths, M.B.E.; Bialiayeu, A.; Zhang, Y.; Gordon, P.G.; Barry, S.T.; Albert, J. Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles. Opt. Express 2013, 21, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Mandia, D.J.; Barry, S.T.; Albert, J. Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions. Opt. Express 2014, 22, 31665–31676. [Google Scholar] [CrossRef] [PubMed]
- De Zuani, S.; Peterseim, T.; Berrier, A.; Gompf, B.; Dressel, M. Second harmonic generation enhancement at the percolation threshold. Appl. Phys. Lett. 2014, 104, 241109. [Google Scholar] [CrossRef]
- Kashyap, R. Fiber Bragg Gratings, 2nd ed.; Academic Press: Burlington, VT, USA, 2011; ISBN 9780123725790. [Google Scholar]
- Othonos, A.; Kalli, K. Fibre Bragg Gratings, Fundamentals and Applications in Telecommunication and Sensing; Artech House: Norwood, MA, USA, 1999; ISBN 0-89006-344-3. [Google Scholar]
- Meltz, G.; Morey, W.W.; Glenn, W.H. In-fiber Bragg grating tap. In OFC ’90: Optical Fiber Communication Conference, San Francisco, California, 22–26 January 1990: Postdeadline Papers; Optical Society of America: Washington, DC, USA, 1990. [Google Scholar] [CrossRef]
- Kashyap, R.; Wyatt, R.; Campbell, R.J. Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating. Electron. Lett. 1993, 29, 154–156. [Google Scholar] [CrossRef]
- Laffont, G.; Ferdinand, P. Tilted short-period fibre-Bragg- grating induced coupling to cladding modes for accurate refractometry. Meas. Sci. Technol. 2001, 12, 765–770. [Google Scholar] [CrossRef]
- Riant, I.; Gasca, L.; Sansonetti, P.; Bourret, G.; Chesnoy, J. Gain equalization with optimized slanted Bragg grating on adapted fibre for multichannel long-haul submarine transmission. In Proceedings of the International Conference on Integrated Optics and Optical Fiber Communication, San Diego, CA, USA, 21–26 February 1999; Optical Society of America: Washington, DC, USA, 1999; Volume 3, p. 147. [Google Scholar] [CrossRef]
- Erdogan, T.; Sipe, J.E. Tilted fiber phase gratings. J. Opt. Soc. Am. A 1996, 13, 296–313. [Google Scholar] [CrossRef]
- Feder, K.S.; Westbrook, P.S.; Ging, J.; Reyes, P.I.; Carver, G.E. In-fiber spectrometer using tilted fiber gratings. Photonics Technol. Lett. 2003, 15, 933–935. [Google Scholar] [CrossRef]
- Albert, J.; Shao, L.Y.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
- Huang, W.P.; Mu, J.W. Complex coupled mode theory for optical waveguides. Opt. Express 2009, 17, 19134–19152. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Yang, L.; Huang, W.P.; Jian, S.S. Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry. J. Lightwave Technol. 2008, 26, 1868–1876. [Google Scholar] [CrossRef]
- Bialiayeu, A. The Sensitivity Enhancement of Fiber-Based Bragg Sensors with Resonant Nano-Scale Coatings. Ph.D. Thesis, Carleton University, Ottawa, ON, Canada, 2014. [Google Scholar]
- Fleming, J.W. Dispersion in GeO2-SiO2 glasses. Appl. Opt. 1984, 23, 4486–4493. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhou, Y.; Albert, J. A true fiber optic refractometer. Laser Photonics Rev. 2017, 11, 1600157. [Google Scholar] [CrossRef]
- Sihvola, A. Electromagnetic Mixing Formulas and Applications; IEE: London, UK, 1999; ISBN 0852967721. [Google Scholar]
- Cross, G.H. Fundamental limit to the use of effective medium theories in optics. Opt. Lett. 2013, 38, 3057–3060. [Google Scholar] [CrossRef] [PubMed]
- Sennett, R.S.; Scott, G.D. The Structure of Evaporated Metal Films and Their Optical Properties. J. Opt. Soc. Am. 1950, 40, 203–211. [Google Scholar] [CrossRef]
- Gall, D. Electron mean free path in elemental metals. J. Appl. Phys. 2016, 119, 085101. [Google Scholar] [CrossRef]
- Alam, M.Z.; Albert, J. Selective excitation of radially and azimuthally polarized optical fiber cladding modes. J. Lightwave Technol. 2013, 31, 3167–3175. [Google Scholar] [CrossRef]
- Shao, L.Y.; Coyle, J.P.; Barry, S.T.; Albert, J. Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers. Opt. Mater. Express 2011, 1, 128–137. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Bialiayeu, A.; Caucheteur, C.; Ahamad, N.; Ianoul, A.; Albert, J. Self-optimized metal coatings for fiber plasmonics by electroless deposition. Opt. Express 2011, 19, 18742–18753. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Horn, R.G. Refractive index of sparse layers of adsorbed gold nanoparticles. J. Colloid Interface Sci. 2007, 315, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.E.; Kim, J.E.; Park, H.Y.; Park, S.; Kim, M.S.; Kim, J.T.; Ju, J.J. Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths. J. Appl. Phys. 2008, 103, 073713. [Google Scholar] [CrossRef]
- Zhou, W.; Mandia, D.J.; Griffiths, M.B.E.; Barry, S.T.; Albert, J. Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths. J. Phys. Chem. C 2014, 118, 670–678. [Google Scholar] [CrossRef]
- Baldini, F.; Brenci, M.; Chiavaioli, F.; Giannetti, A.; Trono, C. Optical fibre gratings as tools for chemical and biochemical sensing. Anal. Bioanal. Chem. 2012, 402, 109–116. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albert, J.; Liu, F.; Marquez-Cruz, V. Hypersensitivity and Applications of Cladding Modes of Optical Fibers Coated with Nanoscale Metal Layers. Sensors 2018, 18, 1518. https://doi.org/10.3390/s18051518
Albert J, Liu F, Marquez-Cruz V. Hypersensitivity and Applications of Cladding Modes of Optical Fibers Coated with Nanoscale Metal Layers. Sensors. 2018; 18(5):1518. https://doi.org/10.3390/s18051518
Chicago/Turabian StyleAlbert, Jacques, Fu Liu, and Violeta Marquez-Cruz. 2018. "Hypersensitivity and Applications of Cladding Modes of Optical Fibers Coated with Nanoscale Metal Layers" Sensors 18, no. 5: 1518. https://doi.org/10.3390/s18051518
APA StyleAlbert, J., Liu, F., & Marquez-Cruz, V. (2018). Hypersensitivity and Applications of Cladding Modes of Optical Fibers Coated with Nanoscale Metal Layers. Sensors, 18(5), 1518. https://doi.org/10.3390/s18051518