Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations
Abstract
:1. Introduction
2. Related Works
3. Smart Grid Distribution System
4. The Proposed HWN Architecture
4.1. Inter-Networked Distribution Substations
4.2. Multipath Transmission Control Protocol (MPTCP)
5. Performance Study
5.1. Simulation Setup
5.2. Performance Gain of the Proposed Architecture
5.3. Impact of Available Contention-Free Link Capacity
5.4. Effect of MPTCP Maximum Congestion Window Size
5.5. Network Performance with Different Data Sizes
5.6. HWNs for Future Distribution System Applications
5.7. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hong, M.; Loparo, K.A.; Culver, W. Towards a more reliable and efficient electric distribution system. In Proceedings of the 2013 IEEE Energytech, Cleveland, OH, USA, 21–23 May 2013; pp. 1–5. [Google Scholar]
- Yamzaki, J.; Fukuhara, H.; Itoh, Y.; Mursawa, M.; Tsai, J.; Yoshino, D.; Kikuchi, S.; Tokura, H.; Hayashi, T.; Iwase, J. Data processing framework with analytic infrastructure for future smart grid. In Proceedings of the 2014 International Conference on IEEE Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–22 October 2014; pp. 241–244. [Google Scholar]
- Lawrence, T.M.; Watson, R.T.; Boudreau, M.C.; Mohammadpour, J. Data Flow Requirements for Integrating Smart Buildings and a Smart Grid through Model Predictive Control. Procedia Eng. 2017, 180, 1402–1412. [Google Scholar] [CrossRef]
- See, J.; Carr, W.; Collier, S.E. Real time distribution analysis for electric utilities. In Proceedings of the 2008 IEEE Rural Electric Power Conference, Charleston, SC, USA, 27–29 April 2008; p. B5-B5-8. [Google Scholar]
- Woods, E.; Alexander, D.; Labastida, R.; Watson, R. UK Smart Cities Index, Assessment of Strategy and Execution for 10 Cities; Technical Report; Navigant Consulting: London, UK, 2015. [Google Scholar]
- Solanki, J.; Khushalani, S.; Schulz, N. A Multi-Agent Solution to Distribution Systems Restoration. IEEE Trans. Power Syst. 2007, 22, 1026–1034. [Google Scholar] [CrossRef]
- Teng, J.H.; Huang, W.H.; Luan, S.W. Automatic and Fast Faulted Line-Section Location Method for Distribution Systems Based on Fault Indicators. IEEE Trans. Power Syst. 2014, 29, 1653–1662. [Google Scholar] [CrossRef]
- Saponara, S. Distributed Measuring System for Predictive Diagnosis of Uninterruptible Power Supplies in Safety-Critical Applications. Energies 2016, 9, 327. [Google Scholar] [CrossRef]
- Communication Delivery Time Performance Requirements for Electric Power Substation Automation; IEEE Std 1646-2004; IEEE: Piscataway, NJ, USA, 2005.
- Ancillotti, E.; Bruno, R.; Conti, M. The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Comput. Commun. 2013, 36, 1665–1697. [Google Scholar] [CrossRef]
- Erol-Kantarci, M.; Mouftah, H.T. Wireless multimedia sensor and actor networks for the next generation power grid. Ad Hoc Netw. 2011, 9, 542–551. [Google Scholar] [CrossRef]
- Zidan, A.; Khairalla, M.; Abdrabou, A.M.; Khalifa, T.; Shaban, K.; Abdrabou, A.; Shatshat, R.E.; Gaouda, A.M. Fault Detection, Isolation, and Service Restoration in Distribution Systems: State-of-the-Art and Future Trends. IEEE Trans. Smart Grid 2017, 8, 2170–2185. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Z. Cyber security in the Smart Grid: Survey and challenges. Comput. Netw. 2013, 57, 1344–1371. [Google Scholar] [CrossRef]
- Saponara, S.; Bacchillone, T. Network Architecture, Security Issues, and Hardware Implementation of a Home Area Network for Smart Grid. J. Comput. Netw. Commun. 2012, 2012, 534512. [Google Scholar] [CrossRef]
- Yang, Q.; Barria, J.; Green, T. Communication Infrastructures for Distributed Control of Power Distribution Networks. IEEE Trans. Ind. Inform. 2011, 7, 316–327. [Google Scholar] [CrossRef]
- Abdrabou, A. A Wireless Communication Architecture for Smart Grid Distribution Networks. IEEE Syst. J. 2014, 10, 251–261. [Google Scholar] [CrossRef]
- Devidas, A.R.; Ramesh, M.V.; Rangan, V.P. High performance communication architecture for smart distribution power grid in developing nations. Wirel. Netw. 2016. [Google Scholar] [CrossRef]
- Kong, P.Y. Wireless Neighborhood Area Networks With QoS Support for Demand Response in Smart Grid. IEEE Trans. Smart Grid 2016, 7, 1913–1923. [Google Scholar] [CrossRef]
- Cisco Systems. Why IP Is the Right Foundation for the Smart Grid; White Paper; Cisco Publication: Indianapolis, IN, USA, 2010. [Google Scholar]
- Cherukuri, N.; Nahrstedt, K. Cooperative congestion control in power grid communication networks. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; pp. 587–592. [Google Scholar]
- Li, L. An Improved Congestion Control Strategy Algorithm for Heterogeneous Network. J. Netw. 2013, 8, 2107–2113. [Google Scholar] [CrossRef]
- Khalifa, T.; Abdrabou, A.; Naik, K.; Alsabaan, M.; Nayak, A.; Goel, N. Split-and Aggregated-transport control protocol (SA-TCP) for Smart Metering Infrastructure. IEEE Trans. Smart Grid 2014, 5, 381–391. [Google Scholar] [CrossRef]
- Shariatzadeh, F.; Chanda, S.; Srivastava, A.K.; Bose, A. Real time benefit computation for electric distribution system automation and control. In Proceedings of the 2014 IEEE Industry Application Society Annual Meeting, Vancouver, BC, Canada, 5–9 October 2014; pp. 1–8. [Google Scholar]
- Yu, N.; Shah, S.; Johnson, R.; Sherick, R.; Hong, M.; Loparo, K. Big data analytics in power distribution systems. In Proceedings of the 2015 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 18–20 February 2015; pp. 1–5. [Google Scholar]
- IEEE Standard for Synchrophasor Measurements for Power Systems; IEEE Std. C37.118.1; IEEE: Piscataway, NJ, USA, 2005.
- IEEE Standard for Synchrophasor Data Transfer for Power Systems; IEEE Std. C37.118.2; IEEE: Piscataway, NJ, USA, 2005.
- Deek, L.; Garcia-Villegas, E.; Belding, E.; Lee, S.J.; Almeroth, K. The Impact of Channel Bonding on 802.11N Network Management. In Proceedings of the Seventh Conference on Emerging Networking Experiments and Technologies, Tokyo, Japan, 6–9 December 2011; ACM: New York, NY, USA, 2011; pp. 11:1–11:12. [Google Scholar]
- Stewart, R. Stream Control Transmission Protocol (SCTP); IETF RFC 4960; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2007. [Google Scholar]
- Iyengar, J.R.; Amer, P.D.; Stewart, R. Concurrent Multipath Transfer Using SCTP Multihoming over Independent End-to-end Paths. IEEE/ACM Trans. Netw. 2006, 14, 951–964. [Google Scholar] [CrossRef]
- Becke, M.; Adhari, H.; Rathgeb, E.P.; Fa, F.; Yang, X.; Zhou, X. Comparison of Multipath TCP and CMT-SCTP based on intercontinental measurements. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 1360–1366. [Google Scholar]
- Raiciu, C.; Paasch, C.; Barre, S.; Ford, A.; Honda, M.; Duchene, F.; Bonaventure, O.; Handley, M. How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (NSDI’12), San Jose, CA, USA, 25–27 April 2012; USENIX Association: Berkeley, CA, USA, 2012; p. 29. [Google Scholar]
- Coudron, M.; Secci, S.; Pujolle, G. Differentiated pacing on multiple paths to improve one-way delay estimations. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 672–678. [Google Scholar]
- Raiciu, C.; Handley, M.; Wischik, D. Coupled Multipath-Aware Congestion Control; IETF Draft Draft-Raiciu- Mptcp-Congestion-01. txt; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2010. [Google Scholar]
- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the 5 GHz Band; IEEE Std. 802.11a; IEEE: Piscataway, NJ, USA, 1999.
- 3rd Generation Partnership Project (3GPP). Available online: http://www.3gpp.org/ (accessed on 12 May 2016).
- Adrah, C.M.; Bjornstad, S.; Kure, O. Fusion networking technology for IEC 61850 inter substation communication. In Proceedings of the 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 23–26 July 2017; pp. 152–156. [Google Scholar]
- IEEE Standard for Synchrophasor Data for Power Systems; IEEE Std. C37.118-2005; IEEE: Piscataway, NJ, USA, 2006.
- Communication Networks and Systems for Power Utility Automation—Part 90-1: Use of IEC 61850 for the Communication between Substation; IEC/TR 61850-90-1; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2010.
- Ali, I.; Aftab, M.A.; Hussain, S.M.S. Performance comparison of IEC 61850-90-5 and IEEE C37.118.2 based wide area PMU communication networks. J. Mod. Power Syst. Clean Energy 2016, 4, 487–495. [Google Scholar] [CrossRef]
System Parameter | Value |
---|---|
Basic Rate | 6 Mbps |
Data Rate | 54 Mbps |
PHY | 20 s |
PLCP | 24 bits |
MAC Overhead | 246 bits |
22.3 s+ PHY | |
30.3 s + PHY | |
22.3 s + PHY | |
Slot Time | 9 s |
SIFS | 16 s |
DIFS | 34 s |
32 | |
1024 |
3GPP Release | Downlink Speed (Mbps) | Uplink Speed (Mbps) |
---|---|---|
Rel 6 (3G) | 14.4 | 5.7 |
Rel 9 (4G) | 84 | 23 |
Rel 11 (4G) | 336–672 | 70 |
3G/4G speeds | 384 kbps, 1 Mbps, 5.7 Mbps, 23 Mbps, & 70 Mbps |
Max congestion window size | 13, 31, 55, & 65 |
Data burst size | 5 KB, 500 KB, 1 MB, & 2 MB |
Number of substation | 3 & 7 |
Message Type | Application | Transfer Time (ms) |
---|---|---|
1A | Fast messages (e.g., Trip) | 3–10 |
1B | Normal/Other fast Messages | 20–100 |
4 | Raw Data | 3–10 |
2 | Medium speed | 100 |
3 | Low speed | 500 |
6 | File transfer | 1000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalifa, T.; Abdrabou, A.; Shaban, K.; Gaouda, A.M. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations. Sensors 2018, 18, 1517. https://doi.org/10.3390/s18051517
Khalifa T, Abdrabou A, Shaban K, Gaouda AM. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations. Sensors. 2018; 18(5):1517. https://doi.org/10.3390/s18051517
Chicago/Turabian StyleKhalifa, Tarek, Atef Abdrabou, Khaled Shaban, and A. M. Gaouda. 2018. "Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations" Sensors 18, no. 5: 1517. https://doi.org/10.3390/s18051517
APA StyleKhalifa, T., Abdrabou, A., Shaban, K., & Gaouda, A. M. (2018). Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations. Sensors, 18(5), 1517. https://doi.org/10.3390/s18051517