Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking
Abstract
:1. Introduction
2. Related Work
3. System Model and Problem Statement
3.1. Network Model
3.2. Problem Statement
4. Main Design of the CJSR Scheme
4.1. The Design of Data Structures
4.2. CJSR Scheme
Algorithm 1 Pre-caching | |
1: | Step 1: requesting for from = {} is issued by a user |
2: | arrives at a DP or a DC |
3: | Construct the = {} from the PathMark element of |
4: | Compute the number of vertices in the : |
5: | (n–m) packets are divided into (m–n)/d arrays, each of which contains d packets |
6: | For j = 1 to do |
7: | For k = m + j × d − d to m + j × d − 1 |
8: | Produced a data packet , add j to its PathMark field indicating its destination |
9: | Forward to |
10: | End For |
11: | End For |
12: | Step 2:The transmission of a data packet |
13: | For k = m to n |
14: | For j = to 1 |
15: | arrives at |
16: | If is found in the PIT of |
17: | If the of is identical to ’s sequence number |
18: | Cache |
19: | Else |
20: | Forward to next vertex |
21: | End if |
22: | Else |
23: | Drop |
24: | End If |
25: | End For |
26: | End For |
Algorithm 2 Caching Joint Shortcut Routing | |
1: | requesting for from = {} is issued by a user |
2: | arrives at a vertex |
3: | If the pre-cached data in vertex meets the demand after performing lookup on its Content Store |
4: | Forward to user |
5: | Else |
6: | Forward to next vertex |
7: | If arrives at a DC |
8: | If the requested data have not been uploaded |
9: | The DC responds the location of DP to the user |
10: | The user forwards towards the DP |
11: | The DP performs algorithm 1 between the DP and the user (uploading pre-caching) |
12: | Else |
13: | The DC performs algorithm 1 between the DC and the user (downloading pre-caching) |
14: | End If |
15: | End If |
4.3. Idle CRs Involved Pre-Caching (ICIP)
Algorithm 3 Idle CRs Involved Provident Caching (ICIP) | |
1: | requesting for from = {} is synthesized by user |
2: | Step 1: arrives at |
3: | ++ |
4: | If is found after performing lookup in the Content Store |
5: | Forward to |
6: | Else |
7: | Check ES |
8: | If found entry in ES |
9: | Forward to |
10: | Else forward to next vertex |
11: | If arrives at a DC or a DP |
12: | Perform algorithm 1 |
13: | End If |
14: | End If |
15: | End If |
16: | Step 2:A data packetarrives at a CR |
17: | If is found in the PIT of |
18: | If the of is identical to ’s sequence number |
19: | If the left cache storage of is enough |
20: | Cache the |
21: | Else |
22: | For each cached data packet in |
23: | If |
24: | Replace the least frequently used data packet with |
25: | Else |
26: | Forward the to |
27: | Add to Extra Store |
28: | End If |
29: | End For |
30: | End If |
31: | End If |
32: | Else |
33: | Drop |
34: | End If |
5. The Experimental Results and Analysis
5.1. Delay Analysis
5.2. Packets Processed Analysis
5.3. Cache Hits Analysis
6. Conclusions and Future Works
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sarkar, S.; Chatterjee, S.; Misra, S. Assessment of the Suitability of Fog Computing in the Context of Internet of Things. IEEE Trans. Cloud Comput. 2015. [Google Scholar] [CrossRef]
- Xu, J.; Liu, A.; Xiong, N.; Wang, T.; Zuo, Z. Integrated Collaborative Filtering Recommendation in Social Cyber-Physical Systems. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717749745. [Google Scholar] [CrossRef]
- Internet of Things Market Forecast: Cisco. Available online: http://postscapes.com/internet-of-things-market-size (accessed on 18 February 2018).
- Xu, X.; Yuan, M.; Liu, X.; Liu, A.; Xiong, N.; Cai, Z.; Wang, T. Cross-layer Optimized Opportunistic Routing Scheme for Loss-and-delay Sensitive WSNs. Sensors 2018, 18, 1422. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, J.; Jeong, Y. Sustainable load-balancing scheme for inter-sensor convergence processing of routing cooperation topology. Sustainability 2016, 8, 436. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Zhang, S.; Liu, A. Big Program Code Dissemination Scheme for Emergency Software-define Wireless Sensor Networks. Peer Peer Netw. Appl. 2017. [Google Scholar] [CrossRef]
- Liu, A.; Chen, W.; Liu, X. Delay Optimal Opportunistic Pipeline Routing Scheme for Cognitive Radio Sensor Networks. Int. J. Distrib. Sens. Netw. 2018. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, W.; Li, Z.; Chen, L.; Wang, R. Noise-tolerant Wireless Sensor Networks Localization via Multi-norms Regularized Matrix Completion. IEEE Trans. Veh. Technol. 2017, 1–11. [Google Scholar] [CrossRef]
- Zhang, N.; Liang, H.; Cheng, N.; Tang, Y.; Mark, J.W.; Shen, X.S. Dynamic spectrum access in multi-channel cognitive radio networks. IEEE J. Sel. Areas Commun. 2014, 32, 2053–2064. [Google Scholar] [CrossRef]
- Huang, M.; Liu, Y.; Zhang, N.; Xiong, N.; Liu, A.; Zeng, Z.; Song, H. A Services Routing based Caching Scheme for Cloud Assisted CRNs. IEEE Access 2018, 6, 15787–15805. [Google Scholar] [CrossRef]
- Huang, M.; Liu, A.; Zhao, M.; Wang, T. Multi Working Sets Alternate Covering Scheme for Continuous Partial Coverage in WSNs. Peer Peer Netw. Appl. 2018. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, S.; Liu, A.; Xiong, N.; Vasilakos, A.V. Knowledge-aware Proactive Nodes Selection Approach for Energy management in Internet of Things. Future Gen. Comput. Syst. 2017. [Google Scholar] [CrossRef]
- Liu, X.; Dong, M.; Liu, Y.; Liu, A.; Xiong, N. Construction Low Complexity and Low Delay CDS for Big Data Codes Dissemination. Complexity 2018, 2018, 5429546. [Google Scholar] [CrossRef]
- Lee, J.; Sung, Y.; Park, J. Lightweight sensor authentication scheme for energy efficiency in ubiquitous computing environments. Sensors 2016, 16, 2044. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Liu, A.; Xiong, N.; Wang, T.; Vasilakos, A.V. A Low-latency Communication Scheme for Mobile Wireless Sensor Control Systems. IEEE Trans. Syst. Man Cybern. Syst. 2018. [Google Scholar] [CrossRef]
- Wu, M.; Wu, Y.; Liu, C.; Cai, Z.; Xiong, N.; Liu, A.; Ma, M. An Effective Delay Reduction Approach through Portion of Nodes with Larger Duty Cycle for Industrial WSNs. Sensors 2018, 18, 1535. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Z.; Chen, X.; Xhafa, F.; Tan, X.; Wong, D.S. L-EncDB: A lightweight framework for privacy-preserving data queries in cloud computing. Knowl. Based Syst. 2015, 79, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Wu, Y.; Liu, X.; Ma, M.; Liu, A.; Zhao, M. Learning Based Synchronous Approach from Forwarding Nodes to Reduce the Delay for Industrial Internet of Things. EURASIP J. Wirel. Commun. Netw. 2018, 10. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, N.; Zhang, N.; Liu, A.; Shen, H.; Huang, C. A Trust with Abstract Information Verified Routing Scheme for Cyber-physical Network. IEEE Access 2018. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Weng, J.; Ma, J.; Lou, W. Verifiable computation over large database with incremental updates. IEEE Trans. Comput. 2016, 65, 3184–3195. [Google Scholar] [CrossRef]
- Li, X.; Liu, A.; Xie, M.; Xiong, N.; Zeng, Z.; Cai, Z. Adaptive Aggregation Routing to Reduce Delay for Multi-Layer Wireless Sensor Networks. Sensors 2018, 18, 1216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, X.; Li, J.; Wong, D.S.; Li, H.; You, I. Ensuring attribute privacy protection and fast decryption for outsourced data security in mobile cloud computing. Inf. Sci. 2017, 379, 42–61. [Google Scholar] [CrossRef]
- Liu, A.; Zhao, S. High performance target tracking scheme with low prediction precision requirement in WSNs. Int. J. Ad Hoc Ubiquitous Comput. 2017. Available online: http://www.inderscience.com /info/ingeneral/forthcoming.php?jcode=ijahuc (accessed on 3 February 2018).
- Xu, Q.; Su, Z.; Zheng, Q.; Luo, M.; Dong, B. Secure Content Delivery with Edge Nodes to Save Caching Resources for Mobile Users in Green Cities. IEEE Trans. Ind. Inform. 2017. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Song, H.; Liu, A. Big data orchestration as a service network. IEEE Commun. Mag. 2017, 55, 94–101. [Google Scholar] [CrossRef]
- Liu, Y.; Ota, K.; Zhang, K.; Ma, M.; Xiong, N.; Liu, A.; Long, J. QTSAC: A Energy efficient MAC Protocol for Delay Minimized in Wireless Sensor networks. IEEE Access 2018. [Google Scholar] [CrossRef]
- Majeed, M.F.; Ahmed, S.H.; Muhammad, S.; Song, H.; Rawat, D.B. Multimedia streaming in information-centric networking: A survey and future perspectives. Comput. Netw. 2017, 125, 103–121. [Google Scholar] [CrossRef]
- Misra, S.; Chatterjee, S.; Obaidat, M.S. On theoretical modeling of sensor cloud: A paradigm shift from wireless sensor network. IEEE Syst. J. 2017, 11, 1084–1093. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, A. On the hybrid using of unicast-broadcast in wireless sensor networks. Comput. Electr. Eng. 2017. [Google Scholar] [CrossRef]
- Yu, S.; Liu, X.; Liu, A.; Xiong, N.; Cai, Z.; Wang, T. Adaption Broadcast Radius based Code Dissemination Scheme for Low Energy Wireless Sensor Networks. Sensors 2018, 18, 1509. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.Z.A.; Wang, G.; Wu, J.; Cao, J.; Liu, X.; Wang, T. Dependable structural health monitoring using wireless sensor networks. IEEE Trans. Dependable Secur. Comput. 2017, 14, 363–376. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Xhafa, F.; Barolli, L. Secure deduplication storage systems supporting keyword search. J. Comput. Syst. Sci. 2015, 81, 1532–1541. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Huang, M.; Zhao, M.; Wang, T. A Smart High-Speed Backbone Path Construction Approach for Energy and Delay Optimization in WSNs. IEEE Access 2018. [Google Scholar] [CrossRef]
- Neiat, A.G.; Bouguettaya, A.; Sellis, T.; Mistry, S. Crowdsourced Coverage as a Service: Two-Level Composition of Sensor Cloud Services. IEEE Trans. Knowl. Data Eng. 2017, 29, 1384–1397. [Google Scholar] [CrossRef]
- Majeed, M.F.; Dailey, M.N.; Khan, R.; Tunpan, A. Pre-caching: A proactive scheme for caching video traffic in named data mesh networks. J. Netw. Comput. Appl. 2017, 87, 116–130. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, A.; Guo, S.; Li, Z.; Choi, Y.J. Context-aware collect data with energy efficient in Cyber-physical cloud systems. Future Gen. Comput. Syst. 2017. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, G.; Bhuiyan, M.Z.A.; Wu, J. Understanding graph-based trust evaluation in online social networks: Methodologies and challenges. ACM Comput. Surv. 2016, 49, 10. [Google Scholar] [CrossRef]
- Xu, Q.; Su, Z.; Yang, K. Optimal Control Theory-Based Epidemic Information Spreading Scheme for Mobile Social Users with Energy Constraint. IEEE Access 2017, 5, 14107–14118. [Google Scholar] [CrossRef]
- Tang, J.; Liu, A.; Zhang, J.; Zeng, Z.; Xiong, N.; Wang, T. A Security Routing Scheme Using Traceback Approach for Energy Harvesting Sensor Networks. Sensors 2018, 18, 751. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xiao, F.; Sun, L.; Wang, R.; Yang, P. R-TTWD: Robust device-free through-the-wall detection of moving human with WiFi. IEEE J. Sel. Areas Commun. 2017, 35, 1090–1103. [Google Scholar] [CrossRef]
- Wang, J.; Liu, A.; Yan, T.; Zeng, Z. A Resource Allocation Model Based on Double-sided Combinational Auctions for Transparent Computing. Peer Peer Netw. Appl. 2017. [Google Scholar] [CrossRef]
- Xin, H.; Liu, X. Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access 2017, 5, 16193–16204. [Google Scholar] [CrossRef]
- Gui, J.; Deng, J. Multi-hop Relay-Aided Underlay D2D Communications for Improving Cellular Coverage Quality. IEEE Access 2018, 6, 14318–14338. [Google Scholar] [CrossRef]
- Nguyen, P.L.; Ji, Y.; Liu, Z.; Vu, H.; Nguyen, K.V. Distributed hole-bypassing protocol in WSNs with constant stretch and load balancing. Comput. Netw. 2017, 129, 232–250. [Google Scholar]
- Chen, X.; Pu, L.; Gao, L.; Wu, W.; Wu, D. Exploiting massive D2D collaboration for energy-efficient mobile edge computing. IEEE Wirel. Commun. 2017, 24, 64–71. [Google Scholar] [CrossRef]
- Pu, L.; Chen, X.; Xu, J.; Fu, X. D2D fogging: An energy-efficient and incentive-aware task offloading framework via network-assisted D2D collaboration. IEEE J. Sel. Areas Commun. 2016, 34, 3887–3901. [Google Scholar] [CrossRef]
- Søgaard, J.; Shahid, M.; Pokhrel, J.; Brunnström, K. On subjective quality assessment of adaptive video streaming via crowdsourcing and laboratory based experiments. Multimedia Tools Appl. 2017, 76, 16727–16748. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I.; Jiang, M.; Liljeberg, P. Exploiting smart e-health gateways at the edge of healthcare internet-of-things: A fog computing approach. Future Gen. Comput. Syst. 2018, 78, 641–658. [Google Scholar] [CrossRef]
- Li, Z.; Chang, B.; Wang, S.; Liu, A.; Zeng, F.; Luo, G. Dynamic Compressive Wide-band Spectrum Sensing Based on Channel Energy Reconstruction in Cognitive Internet of Things. IEEE Trans. Ind. Inform. 2018. [Google Scholar] [CrossRef]
- Bhuiyan, M.Z.A.; Wu, J.; Wang, G.; Wang, T.; Hassan, M.M. e-Sampling: Event-Sensitive Autonomous Adaptive Sensing and Low-Cost Monitoring in Networked Sensing Systems. ACM Trans. Auton. Adapt. Syst. 2017, 12, 1. [Google Scholar] [CrossRef]
- Chiocchetti, R.; Perino, D.; Carofiglio, G.; Rossi, D.; Rossini, G. INFORM: A dynamic Interest Forwarding Mechanism for Information Centric Networking. In Proceedings of the ACM SIGCOMM Workshop Information-Centric Networking, Hong Kong, China, 12 August 2013; pp. 9–14. [Google Scholar]
- Islam, S.M.; Moon, A.R. Analysis of LCD (Leave Copy Down) &LCE (Leave Copy Everywhere) Caching Scheme for Tree Topology; East West University: Chicago, IL, USA, 2016; pp. 12–15. [Google Scholar]
- Laoutaris, N.; Che, H.; Stavrakakis, I. The LCD interconnection of LRU caches and its analysis. Perform. Eval. 2006, 63, 609–634. [Google Scholar] [CrossRef]
- Chai, W.K.; He, D.; Psaras, I.; Pavlou, G. Cache “less for more” in information-centric networks. In Proceedings of the International Conference on Research in Networking, Prague, Czech Republic, 21–25 May 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 27–40. [Google Scholar]
- Psaras, I.; Chai, W.K.; Pavlou, G. Probabilistic in-network caching for information-centric networks. In Proceedings of the Second Edition of the ICN Workshop on Information-Centric Networking, Helsinki, Finland, 17 August 2012; pp. 55–60. [Google Scholar]
- Ming, Z.X.; Xu, M.W.; Wang, D. Age-Based cooperative caching in information-centric networks. In Proceedings of the 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Orlando, FL, USA, 25–30 March 2012; pp. 268–273. [Google Scholar]
- Cho, K.; Lee, M.; Park, K.; Kwon, T.T.; Choi, Y.; Pack, S. WAVE: Popularity-based and collaborative in-network caching for content-oriented Networks. In Proceedings of the 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Orlando, FL, USA, 25–30 March 2012; pp. 316–321. [Google Scholar]
- Zhang, G.Q.; Li, Y.; Lin, T. Caching in information centric networking: A survey. Comput. Netw. 2013, 57, 3128–3141. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, F.; Cai, Z.; Xiao, N.; Zhao, Z. Edge-Based Efficient Search over Encrypted Data Mobile Cloud Storage. Sensors 2018, 18, 1189. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, C.; Antonopoulos, C.; Koubias, S. Performance enhancement in WSN through data cache replacement policies. In Proceedings of the 2012 IEEE 17th International Conference on Emerging Technologies and Factory Automation, ETFA, Krakow, Poland, 17–21 September 2012; pp. 1–8. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
CR | Content Router |
DC | Data Center |
DP | Data Producer |
A data packet | |
An interest packet for | |
G = (, E) | An undirected graph, and E denote vertex and edge respectively |
The routing path used for pre-caching | |
An intermediate vertex on the | |
A vertex on the adjacent to a Data Producer . | |
A vertex on the adjacent to a user | |
A vertex on the adjacent to a Data Center | |
The storage capacity of | |
The number of CRs along the | |
The sequence number of a CR in the PathMark element | |
The Interest frequency of on from user |
Parameter | Values |
---|---|
Routing strategy | Automatic shortest routes |
Interest frequency | 50 interest packets per second |
Cache replacement policy | Least recently used (LRU) |
Forwarding strategy | Best-route |
Simulation time | 10 min |
Connection | Point to point |
Number of CRs (Scenarios 1–5) | 88 |
Number of CRs (Scenario 6) | 113 |
probability parameter | 0.5 |
cache capacity | 250 |
Scenario | Number of DPs | Number of Users | Simulation Time | Total Number of Requested Data Packets |
---|---|---|---|---|
Scenario 1 | 1 | 1 | User 1: 10 min | User 1: 30,000 packets |
Scenario 2 | 1 | 2 | User 1: 10 min User 2: 599 s | User 1: 30,000 packets User 2: 29,950 packets |
Scenario 3 | 1 | 12 | User 1: 10 min Users 2–12: 72 s | User 1: 30,000 packets Users 2–12: 3600 packets |
Scenario 4 | 2 | 2 | User 1: 10 min User 2: 10 min | User 1: 30,000 packets User 2: 30,000 packets |
Scenario 5 | 2 | 4 | Users 1 and 3: 10 min Users 2 and 4: 50 s | Users 1 and 3: 30,000 packets Users 2 and 4: 2500 packets |
Scenario 6 | 6 | 6 | User 1–6: 10 min | Users 1–6: 30,000 packets |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Liu, A.; Zhang, C.; Xiong, N.; Zeng, Z.; Cai, Z. Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking. Sensors 2018, 18, 1750. https://doi.org/10.3390/s18061750
Huang B, Liu A, Zhang C, Xiong N, Zeng Z, Cai Z. Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking. Sensors. 2018; 18(6):1750. https://doi.org/10.3390/s18061750
Chicago/Turabian StyleHuang, Baixiang, Anfeng Liu, Chengyuan Zhang, Naixue Xiong, Zhiwen Zeng, and Zhiping Cai. 2018. "Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking" Sensors 18, no. 6: 1750. https://doi.org/10.3390/s18061750
APA StyleHuang, B., Liu, A., Zhang, C., Xiong, N., Zeng, Z., & Cai, Z. (2018). Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking. Sensors, 18(6), 1750. https://doi.org/10.3390/s18061750