Hydrogen Sulfide Gas Detection via Multivariate Optical Computing
Abstract
:1. Introduction
2. Theory of MOC
- is the estimated value of the property of interest
- is the normalized convolved spectra of samples
- da and db are the detector responses of MOE channel and ND channel, respectively.
- α is the calibration offset and β is the weight coefficient
- ‘’ is the dot product operator
- y is known value of the property of interest in the training set
- is the L2 norm
- Topt is the optimal MOE transmission profile
- TMOE is the MOE transmission spectrum
3. Experiments Setup and Training Spectral Data Collection
3.1. Instrument and Experiment Setup
3.2. Spectral Data Collection
3.2.1. Low-Pressure and Room-Temperature UV Spectral Data Collection
3.2.2. High-Pressure/High-Temperature UV Spectral Data Collection
4. Design and Fabrication of Multivariate Optical Element
5. Multivariate Optical Computing Sensor Test
5.1. Prototype MOC System Testing Setup
5.2. MOC System Testing Results
5.2.1. H2S Gas Sample Test under Different Pressures
5.2.2. H2S and CH3SH Gas Mixture Samples Test under Different Pressures
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elshahawi, H.; Hashem, M.N. Accurate Measurement of the Hydrogen Sulfide Content in Formation Fluid Samples-Case Studies. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 9–12 October 2006. [Google Scholar]
- Hashem, M.N.; Elshahawi, H.; Parasram, R.; Weinheber, P.J.; Borman, C.; Jacobs, S.; O’Keefe, M. Low Level Hydrogen Sulphide Detection using Wireline Formation Testers. In Proceedings of the International Petroleum Technology Conference, Dubai, United Arab Emirates, 4–6 December 2007. [Google Scholar]
- Oxford, W.F.; Foss, R.E. Corrosion of Oil-and Gas-Well Equipment; American Petroleum Institute: Dallas, TX, USA, 1958. [Google Scholar]
- Bonis, M.R.; Crolet, J.L. Why So Low Free Acetic Acid Thresholds, in Sweet Corrosion at Low PCO2? In Proceedings of the NACE International, Houston, TX, USA, 3–7 April 2005. [Google Scholar]
- Garcia, J.M.; Lordo, S.A. Chemistry and Impacts of Chemistry and Impacts of Commonly Used Amine-Based H2S Scavengers on Crude Unit Towers and Overheads. In Proceedings of the NACE International Conference and Exposition, Corrosion, Nashville, TN, USA, 11–15 March 2007. [Google Scholar]
- Dandekar, A.Y. Petroleum Reservoir Rock and Fluid Properties; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- McCain, J.; William, D. The Properties of Petroleum Fluids, 2nd ed.; Pennwell Books: Tulsa, OK, USA, 1990. [Google Scholar]
- Hunt, J. Petroleum Geochemistry and Geology, 2nd ed.; W.H. Freeman and Company: New York, NY, USA, 1996. [Google Scholar]
- Pedersen, K.S.; Christensen, P.L.; Shaikh, J.A. Phase Behavior of Petroleum Reservoir Fluids; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Larsen, E.S.; Hong, W.W.; Spartz, M.L. Hydrogen Sulfide Detection by UV-Assisted Infrared Spectrometry. Appl. Spectrosc. 1997, 51, 1656–1667. [Google Scholar] [CrossRef]
- Isoniemi, E.; Pettersson, M.; Khriachtchev, L.; Lu, J. Infrared Spectroscopy of H2S and SH in Rare-Gas Matrixes. J. Phys. Chem. A 1999, 103, 679–6685. [Google Scholar] [CrossRef]
- Tamaki, J.; Maekawa, T.; Miura, N.; Yamazoe, N. CuO–SnO2 element for highly sensitive and selective detection of H2S. Sens. Actuators B Chem. 1992, 9, 197–203. [Google Scholar] [CrossRef]
- Knee, J.; Knobelspieß, S.; Bierer, B.; Wöllenstei, J. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens. Actuators B Chem. 2016, 222, 625–631. [Google Scholar]
- Hippler, M. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers. Anal. Chem. 2015, 87, 7803–7809. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Jursa, S.A. Absorption and Photoionization Cross Sections of H2O and H2S. Chem. Phys. 1964, 41, 1650–1653. [Google Scholar] [CrossRef]
- Shih, S.-K.; Peyerimhoff, S.D.; Buenker, R.J. Ab initio configuration interaction calculations for the electronic spectrum of hydrogen sulfide. Chem. Phys. 1976, 17, 391–402. [Google Scholar] [CrossRef]
- Gersen, S.; van Essen, M.; Visser, P.; Ahmad, M.; Mokhov, A.; Sepman, A.; Alberts, R.; Douma, A.; Levinsky, H. Detection of H2S, SO2 and NO2 in CO2 at pressures ranging from 1–40 bar by using broadband absorption spectroscopy in the UV/VIS range. Energy Procedia 2014, 63, 2570–2582. [Google Scholar] [CrossRef]
- Zhang, X.; Cu, Z.; Cheng, Z.; Lia, Y.; Xiao, H. Quantitative detection of H2S and CS2 mixed gases based on UV absorption spectrometry. R. Soc. Chem. Adv. 2017, 70, 50889–50898. [Google Scholar] [CrossRef]
- Vaghjiani, G.L. CH3SH ultraviolet absorption cross sections in the region 192.5–309.5 nm and photodecomposition at 222 and 193 nm and 296 K. J. Chem. Phys. 1993, 99, 5936–5943. [Google Scholar] [CrossRef]
- Jones, C.M.; Pelletier, M.T.; Atkinson, R.; Shen, J.; Moore, J.; Anders, J.; Perkins, D.L.; Myrick, M.L. A Small-Volume PVTX System for Broadband Spectroscopic Calibration of Downhole Optical Sensors. Rev. Sci. Instrum. 2017, 88. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.C.W.; Chen, F.Z. Temperature-dependent photoabsorption cross sections of H2S in the 1600–2600 Å region. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 17–23. [Google Scholar] [CrossRef]
- Grosch, H.; Fateev, A.; Clausen, S. UV absorption cross-sections of selected sulfur-containing compounds at temperatures up to 500 °C. J. Quant. Spectrosc. Radiat. Transf. 2015, 154, 28–34. [Google Scholar] [CrossRef]
- Nelson, M.P.; Aust, J.F.; Dobrowolski, J.A.; Verly, P.G.; Myrick, M.L. Multivariate Optical Computation for Predictive Spectroscopy. Anal. Chem. 1998, 70, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Soyemi, O.; Eastwood, D.; Zhang, L.; Li, H.; Karunamuni, J.; Gemperline, P.; Synowicki, R.A.; Myrick, M.L. Design and Testing of a Multivariate Optical Element: The First Demonstration of Multivariate Optical Computing for Predictive Spectroscopy. Anal. Chem. 2001, 73, 1069–1079. [Google Scholar] [CrossRef]
- Soyemi, O.; Haibach, F.; Gemperline, P.J.; Myrick, M.L. Nonlinear Optimization Algorithm for Multivariate Optical Element Design. Appl. Spectrosc. 2002, 56, 477–487. [Google Scholar] [CrossRef]
- Myrick, M.L.; Soyemi, O.; Karunamuni, J.; Eastwood, D.; Zhang, L.; Greera, A.E.; Gemperlineb, P. A single-element all-optical approach to chemometric prediction. Vib. Spectrosc. 2002, 28, 73–81. [Google Scholar] [CrossRef]
- Jones, C.M.; Freese, B.; Pelletier, M.; Perkins, D.; Chen, D.; Shen, J.; Atkinson, R. Laboratory Quality Optical Analysis in Harsh Environments. In Proceedings of the SPE Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 10–12 December 2012. [Google Scholar]
- Boysworth, M.K.; Banerji, S.; Wilson, D.M.; Booksh, K.S. Generalization of multivariate optical computations as a method for improving the speed and precision of spectroscopic analyses. J. Chemom. 2008, 22, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.; Gao, L.; Perkins, D.; Chen, D.; Gascook, D. Field Test of the Integrated Computational Elements: A New Optical Sensor for Downhole Fluid Analysis. In Proceedings of the SPWLA 54th Annual Logging Symposium, New Orleans, LA, USA, 22–26 June 2013. [Google Scholar]
- Davis, B.M.; Hemphill, A.J.; Maltaş, D.C.; Zipper, M.A.; Wang, P.; Ben-Amotz, D. Multivariate Hyperspectral Raman Imaging Using Compressive Detection. Anal. Chem. 2011, 88, 5086–5092. [Google Scholar] [CrossRef] [PubMed]
- Smith, Z.J.; Strombom, S.; Wachsmann-Hogiu, S. Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy. Opt. Expr. 2011, 19, 16950–16962. [Google Scholar] [CrossRef] [PubMed]
- Priore, R.J.; Swanstrom, J.A. Multivariate optical computing for fluorochrome discrimination. In Proceedings of the Optical Diagnostics and Sensing XV: Toward Point-of-Care Diagnostics, San Francisco, CA, USA, 7–12 February 2015. [Google Scholar]
- Priore, R.J. Optics for Biophotonics: Multivariate optical elements beat bandpass filters in fluorescence analysis. Laser Focus World 2013, 49, 49–52. [Google Scholar]
- Priore, R.J.; Swanstrom, J.A. Multivariate optical element platform for compressed detection of fluorescence markers. In Proceedings of the Next-Generation Spectroscopic Technologies, Baltimore, MD, USA, 5–9 May 2014. [Google Scholar]
- Mendendorp, J.; Lodder, R.A. Applications of integrated sensing and processing in spectroscopic imaging and sensing. J. Chemom. 2005, 19, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Nayak, A.B.; Price, J.M.; Dai, B.; Perkins, D.; Chen, D.; Jones, C.M. Characterization of Ion-Assisted Induced Absorption in A-Si Thin-Films Used for Multivariate Optical Computing. In Proceedings of the Next-Generation Spectroscopic Technologies VIII, Baltimore, MD, USA, 20–24 April 2015; p. 94820A. [Google Scholar]
- Popoola, L.T.; Grema, S.A.; Latinwo, G.; Gutti, B.; Balogun, S.A. Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 2013, 4. [Google Scholar] [CrossRef]
- Perez, T.E. Corrosion in the Oil and Gas Industry: An Increasing Challenge for Materials. J. Min. 2013, 65, 1033–1042. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.Y.; Chang, H.; Xiong, S. Fluorescence spectral imaging for characterization of tissue based on multivariate statistical analysis. J. Opt. Soc. Am. 2002, 19, 1823–1831. [Google Scholar] [CrossRef]
Performance | Design MOE | Fabricated MOE | Sample 1 (50 ppm H2S) | Sample 2 (25 ppm H2S and 100 ppm CH3SH Mixture) | Sample 3 (50 ppm H2S and 50 ppm CH3SH Mixture) |
---|---|---|---|---|---|
Simulation or MOC test | Simulation | Simulation | Calibration/Test | Test | Test |
SEC (nmol/mL) | 2.8 | 3.3 | 4.5 | - | - |
Relative SEC (%) | 1.8 | 2.2 | 3.0 | - | - |
SEP (nmol/mL) | - | - | - | 13.1 | 12.8 |
Relative SEP (%) | - | - | - | 8.1 | 8.0 |
Relative sensitivity 1 (%) | 10.5 | 10 | 10 | 10.5 | 9.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, B.; Jones, C.M.; Pearl, M.; Pelletier, M.; Myrick, M. Hydrogen Sulfide Gas Detection via Multivariate Optical Computing. Sensors 2018, 18, 2006. https://doi.org/10.3390/s18072006
Dai B, Jones CM, Pearl M, Pelletier M, Myrick M. Hydrogen Sulfide Gas Detection via Multivariate Optical Computing. Sensors. 2018; 18(7):2006. https://doi.org/10.3390/s18072006
Chicago/Turabian StyleDai, Bin, Christopher Michael Jones, Megan Pearl, Mickey Pelletier, and Mickey Myrick. 2018. "Hydrogen Sulfide Gas Detection via Multivariate Optical Computing" Sensors 18, no. 7: 2006. https://doi.org/10.3390/s18072006
APA StyleDai, B., Jones, C. M., Pearl, M., Pelletier, M., & Myrick, M. (2018). Hydrogen Sulfide Gas Detection via Multivariate Optical Computing. Sensors, 18(7), 2006. https://doi.org/10.3390/s18072006