Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity
Abstract
:1. Introduction
2. Working Principle and Methodology
3. Sensor Design
3.1. Configuration Design
3.2. Mathematical Modeling
3.3. Geometry Optimization
3.4. Enhancement of Sensitivity
3.5. Comparison to Other Sensor Structures
4. Fabrication Process
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ansari, M.Z.; Cho, C.; Choi, W.; Lee, M.; Lee, S.; Kim, J. Improving sensitivity of piezoresistive microcantilever biosensors using stress concentration region designs. J. Phys. D Appl. Phys. 2013, 46, 505501. [Google Scholar] [CrossRef]
- Kumar, S.S.; Pant, B.D. Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: A focused review. Microsyst. Technol. 2014, 20, 1213–1247. [Google Scholar] [CrossRef]
- O’Brien, E.; Waeber, B.; Parati, G.; Staessen, J.; Myers, M.G. Blood Pressure Measuring Devices: Recommendations of the European Society of Hypertension. Br. Med. J. 2001, 322, 531–536. [Google Scholar] [CrossRef]
- Lin, L.; Yun, W. Design, optimization and fabrication of surface micromachined pressure sensors. Mechatronics 1998, 8, 505–519. [Google Scholar] [CrossRef]
- Chen, T.; Chen, L.; Sun, L.; Li, X. Design and Fabrication of a Four-Arm-Structure MEMS Gripper. IEEE Trans. Ind. Electron. 2009, 56, 996–1004. [Google Scholar] [CrossRef]
- Fleming, W.J. Overview of automotive sensors. IEEE Sens. J. 2001, 1, 296–308. [Google Scholar] [CrossRef]
- Guo, Y.; Schutz, S.; Vaghi, A.; Li, Y.H.; Guo, Z.; Chang, F.K.; Barrettino, D.; Wang, S.X. Stand-Alone Stretchable Absolute Pressure Sensing System for Industrial Applications. IEEE Trans. Ind. Electron. 2017, 64, 8739–8746. [Google Scholar] [CrossRef]
- DeanJr, R.; Luque, A. Applications of Microelectromechanical Systems in Industrial Processes and Services. IEEE Trans. Ind. Electron. 2009, 56, 913–925. [Google Scholar]
- Zhu, B.; Zhang, X.; Zhang, Y.; Fatikow, S. Design of diaphragm structure for piezoresistive pressure sensor using topology optimization. Struct. Multidiscip. Optim. 2016, 55, 317–329. [Google Scholar] [CrossRef]
- Sandmaier, H.; Kuhl, K. A square-diaphragm piezoresistive pressure sensor with a rectangular central boss for low-pressure ranges. IEEE Trans. Electron Devices 1993, 40, 1754–1759. [Google Scholar] [CrossRef]
- Tian, B.; Zhao, Y.; Jiang, Z. The novel structural design for pressure sensors. Sens. Rev. 2010, 30, 305–313. [Google Scholar] [CrossRef]
- Tian, B.; Zhao, Y.; Jiang, Z.; Hu, B. The design and analysis of beam-membrane structure sensors for micro-pressure measurement. Rev. Sci. Instrum. 2012, 83, 045003. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhao, Y.; Sun, L.; Tian, B.; Jiang, Z. Incorporation of beams into bossed diaphragm for a high sensitivity and overload micro pressure sensor. Rev. Sci. Instrum. 2013, 84, 015004. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhao, Y.; Li, L.; Li, C.; Liu, Y.; Tian, B. Realization of a micro pressure sensor with high sensitivity and overload by introducing beams and Islands. Microsyst. Technol. 2015, 4, 739–747. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, D. A high sensitivity and high linearity pressure sensor based on a peninsula—Structured diaphragm for low-pressure ranges. Sens. Actuators A Phys. 2014, 216, 176–189. [Google Scholar] [CrossRef]
- Xu, T.; Zhao, L.; Jiang, Z.; Guo, X.; Ding, J.; Xiang, W.; Zhao, Y. A high sensitive pressure sensor with the novel bossed diaphragm combined with peninsula-island structure. Sens. Actuators A Phys. 2016, 244, 66–76. [Google Scholar] [CrossRef]
- Meng, X.; Zhao, Y. The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor. Sensors 2016, 16, 348. [Google Scholar] [CrossRef] [PubMed]
- Guan, T.; Yang, F.; Wang, W.; Huang, X.; Jiang, B.; Zhang, D. The Design and Analysis of Piezoresistive Shuriken-Structured Diaphragm Micro-Pressure Sensors. J. Microelectronmech. Syst. 2017, 26, 206–214. [Google Scholar] [CrossRef]
- Tran, A.V.; Zhang, X.; Zhu, B. The Development of a New Piezoresistive Pressure Sensor for Low Pressures. IEEE Trans. Ind. Electron. 2018, 65, 6487–6496. [Google Scholar] [CrossRef]
- Li, C.; Cordovilla, F.; Jagdheesh, R.; Ocaña, J.L. Design Optimization and Fabrication of a Novel Structural SOI Piezoresistive Pressure Sensor with High Accuracy. Sensors 2018, 18, 439. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Huang, J. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions. Sensors 2015, 15, 22692–22704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhe, N.; Kui, L.; Hongbo, W. A new method for the design of pressure sensor in hyperbaric environment. Sens. Rev. 2017, 37, 110–116. [Google Scholar]
- Liu, Y.; Wang, H.; Zhao, W.; Qin, H.; Fang, X. Thermal-Performance Instability in Piezoresistive Sensors: Inducement and Improvement. Sensors 2016, 16, 1984. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 1982, 29, 64–70. [Google Scholar] [CrossRef]
- Warren, C.; Richard, G.; Ali, M. Flat Plates. In Roark’s Formulas for Stress and Strain, 7th ed.; McGraw-Hill: New York, NY, USA, 2002; pp. 451–454. [Google Scholar]
Pressure (kPa) | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 |
1.00 | 1.08 | 0.76 | 0.94 | 0.73 |
2.00 | 2.14 | 1.52 | 1.88 | 1.46 |
3.00 | 3.19 | 2.28 | 2.82 | 2.19 |
4.00 | 4.22 | 3.04 | 3.74 | 2.90 |
5.00 | 5.21 | 3.79 | 4.64 | 3.50 |
% deflection | 32.54 | 23.67 | 29.00 | 21.88 |
Membrane | Longitudinal Stress (MPa) | Transverse Stress (MPa) |
---|---|---|
Case 1 | 28.566 | 7.0979 |
Case 2 | 45.309 | 9.0385 |
Case 3 | 63.042 | 15.05 |
Case 4 | 58.628 | 13.726 |
Pressure Mpa | C1 D = 14 H = 10 | C2 D = 15 H = 11 | C3 D = 16 H = 12 | C4 D = 17 H = 13 | C5 D = 18 H = 14 | C6 D = 19 H = 15 |
---|---|---|---|---|---|---|
1 | 0.98 | 0.70 | 0.76 | 0.55 | 0.46 | 0.39 |
2 | 1.94 | 1.40 | 1.52 | 1.10 | 0.93 | 0.79 |
3 | 2.89 | 2.09 | 2.28 | 1.64 | 1.39 | 1.18 |
4 | 3.81 | 2.78 | 3.04 | 2.18 | 1.84 | 1.57 |
5 | 4.71 | 3.45 | 3.79 | 2.72 | 2.30 | 1.96 |
% deflection | 33.61 | 22.99 | 23.68 | 16.00 | 12.78 | 10.31 |
Pressure MPa | M1 W = 140 B = 40 | M2 W = 150 B = 50 | M3 W = 160 B = 60 | M4 W = 170 B = 70 | M5 W = 180 B = 80 | M6 W = 190 B = 90 |
---|---|---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1 | 0.78 | 0.71 | 0.66 | 0.59 | 0.54 | 0.49 |
2 | 1.55 | 1.42 | 1.31 | 1.18 | 1.07 | 0.97 |
3 | 2.32 | 2.12 | 1.96 | 1.76 | 1.61 | 1.45 |
4 | 3.08 | 2.81 | 2.61 | 2.34 | 2.14 | 1.93 |
5 | 3.83 | 3.49 | 3.24 | 2.91 | 2.66 | 2.41 |
% deflection | 23.94 | 21.84 | 20.26 | 18.19 | 16.63 | 15.03 |
Parameter | L | D | W | H | B | T | P | a | b | c |
---|---|---|---|---|---|---|---|---|---|---|
Dimension | 2900 | 16 | 170 | 12 | 500 | 500 | 100 | 650 | 200 | 100 |
Design | Average ( − ) | Average ( − ) | Sensitivity |
---|---|---|---|
Model 1 | 42.9 | −42.39 | 29.44 |
Model 2 | 63.92 | −45.63 | 34.67 |
Model 3 | 65.09 | −2.48 | 22.83 |
Model 4 | 46.28 | −1.59 | 16.28 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, A.V.; Zhang, X.; Zhu, B. Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity. Sensors 2018, 18, 2023. https://doi.org/10.3390/s18072023
Tran AV, Zhang X, Zhu B. Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity. Sensors. 2018; 18(7):2023. https://doi.org/10.3390/s18072023
Chicago/Turabian StyleTran, Anh Vang, Xianmin Zhang, and Benliang Zhu. 2018. "Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity" Sensors 18, no. 7: 2023. https://doi.org/10.3390/s18072023
APA StyleTran, A. V., Zhang, X., & Zhu, B. (2018). Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity. Sensors, 18(7), 2023. https://doi.org/10.3390/s18072023