Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy)
Abstract
:1. Introduction
2. The Acuto Quarry Test-Site
3. IRT-Survey: Principles and Methods
4. Results
4.1. Daily Thermal Behaviour of Rock-Block by 1D Analysis
4.2. Seasonal Thermal Behaviour of Rock-Block by 1D Analysis
4.3. Thermal Behaviour of Rock-Block by 2D Spatial Analysis
5. Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dussauge-Peisser, C.; Helmstetter, A.; Grasso, J.R.; Hantz, D.; Desvarreux, P.; Jeannin, M.; Giraud, A. Probabilistic approach to rock fall hazard assessment: Potential of historical data analysis. Nat. Hazards Earth Syst. Sci. 2002, 2, 15–26. [Google Scholar] [CrossRef]
- Dussauge, C.; Grasso, J.R.; Helmstetter, A. Statistical analysis of rock fall volume distributions: Implications for rock fall dynamics. J. Geophys. Res. 2003, 108, 2286. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Guzzetti, F.; Rossi, M. Probability distributions of landslide volumes. Nonlinear Process. Geophys. 2009, 16, 179–188. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G.; Hazzard, J. Magnitude and frequency of rock falls along the main transportation corridors of southwestern British Columbia. Can. Geotech. J. 1999, 36, 224–238. [Google Scholar] [CrossRef]
- Groneng, G.; Christiansen, H.H.; Nilsen, B.; Blikra, L.H. Meteorological effects on seasonal displacements of the Åknes rockslide, western Norway. Landslides 2011, 8, 1–15. [Google Scholar] [CrossRef]
- Keefer, D.K. Landslides caused by earthquakes. Bull. Geol. Soc. Am. 1994, 95, 406–421. [Google Scholar] [CrossRef]
- Martino, S.; Bozzano, F.; Caporossi, P.; D’Angiò, D.; Della Seta, M.; Esposito, C.; Fantini, A.; Fiorucci, M.; Giannini, L.M.; Iannucci, R.; et al. Ground Effects Triggered by the 24th August 2016, MW 6.0 Amatrice (Italy) Earthquake: Surveys and Inventorying to Update the CEDIT Catalogue. Geogr. Fis. Din. Quat. 2017, 40, 77–95. [Google Scholar] [CrossRef]
- Delgado, J.; Garrido, J.; Lopez-Casado, C.; Martino, S.; Pelaez, J.A. On far field occurrence of seismically induced landslides. Eng. Geol. 2011, 123, 204–213. [Google Scholar] [CrossRef]
- Ramulu, M.; Chakraborty, A.K.; Sitharam, T.G. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project—A case study. Tunn. Undergr. Space Technol. 2004, 24, 208–221. [Google Scholar] [CrossRef]
- Collins, D.S.; Toya, Y.; Hosseini, Z.; Trifu, C.I. Real Time Detection of Rock Fall Events Using a Microseismic Railway Monitoring System; Geohazards: Kingstone, ON, Canada, 2014. [Google Scholar]
- Julian, M.; Anthony, E. Aspects of landslide activity in the Mercantour Massif and the French Riviera, southeastern France. Geomorphology 1996, 15, 275–289. [Google Scholar] [CrossRef]
- Gunzburger, Y.; Merrien-Soukatchoff, V.; Guglielmi, Y. Influence of daily surface temperature fluctuations on rock slope stability: Case study of the Rochers de Valabres slope (France). Int. J. Rock Mech. Min. Sci. 2005, 42, 331–349. [Google Scholar] [CrossRef]
- Calvari, S.; Spampinato, L.; Lodato, L.; Harris, A.J.L.; Patrick, M.R.; Dehn, J.; Burton, M.R.; Andronico, D. Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J. Geophys. Res. 2005, 110, B02201. [Google Scholar] [CrossRef]
- Chiodini, G.; Vilardo, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C. Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy). J. Geophys. Res. 2007, 112, B12206. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Harris, A.; Dehn, J.; Patrick, M.; Calvari, S.; Ripepe, M.; Lodato, L. Lava effusion rates from hand-held thermal infrared imagery: An example from the June 2003 effusive activity at Stromboli. Bull. Volcanol. 2005, 68, 107–117. [Google Scholar] [CrossRef]
- Coppola, D.; Staudacher, T.; Cigolini, C. Field thermal monitoring during the August 2003 eruption at Piton de la Fournaise (La Reunion). J. Geophys. Res. 2007, 112, B05215. [Google Scholar] [CrossRef]
- Coppola, D.; James, M.R.; Staudacher, T.; Cigolini, C. A comparison of field- and satellite-derived thermal flux at Piton de la Fournaise: Implications for the calculation of lava discharge rate. Bull. Volcanol. 2010, 72, 341–356. [Google Scholar] [CrossRef]
- Nishar, A.; Richards, S.; Breen, D.; Robertson, J.; Breen, B. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei e Tauhara geothermal field, Taupo, New Zealand. Renew. Energy 2016, 86, 1256–1264. [Google Scholar] [CrossRef]
- Harvey, M.C.; Rowland, J.V.; Luketina, K.M. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand. J. Volcanol. Geotherm. Res. 2016, 325, 61–69. [Google Scholar] [CrossRef]
- Schopa, A.; Pantaleo, M.; Walter, T.R. Scale-dependent location of hydrothermal vents: Stress field models and infrared field observations on the Fossa Cone, Vulcano Island, Italy. J. Volcanol. Geotherm. Res. 2011, 203, 133–145. [Google Scholar] [CrossRef]
- Furukawa, Y. Infrared thermography of the fumarole area in the active crater of the Aso volcano, Japan, using a consumer digital camera. J. Asian Earth Sci. 2010, 38, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.A.; Varley, N. Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006–2007. J. Volcanol. Geotherm. Res. 2008, 177, 911–924. [Google Scholar] [CrossRef]
- Balaras, C.A.; Argiriou, A.A. Infrared thermography for building diagnostics. Energy Build. 2002, 34, 171–183. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy 2014, 134, 531–549. [Google Scholar] [CrossRef]
- Lucchi, E. Applications of the infrared thermography in the energy audit of buildings: A review. Renew. Sustain. Energy Rev. 2018, 82, 3077–3090. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; Rapisarda, F.; Cubito, A.; Di Maria, G. Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng. Geol. 2015, 195, 225–235. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Perriello Zampelli, S.; Cubito, A.; Calcaterra, D. InfreRed Thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar]
- Wu, J.H.; Hung-Ming, L.; Der-Her, L.; Shih-Chieh, F. Integrity assessment of rock mass behind the shotcreted slope using thermography. Eng. Geol. 2005, 80, 164–173. [Google Scholar] [CrossRef]
- Grinzato, E.; Bisen, P.G.; Marinetti, S. Monitoring of ancient building by the thermal method. J. Cult. Heritage 2002, 3, 21–29. [Google Scholar] [CrossRef]
- Clark, M.R.; McCann, D.M.; Forde, M.C. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT Int. 2003, 36, 265–275. [Google Scholar] [CrossRef]
- Baron, I.; Beckovsky, D.; Mıca, L. Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 2012, 11, 15–27. [Google Scholar] [CrossRef]
- Teza, G.; Marcato, G.; Castelli, E.; Galgaro, A. IRTROCK: A MATLAB toolbox for contactless recognition of surface and shallow weakness of a rock cliff by infrared thermography. Comput. Geosci. 2012, 45, 109–118. [Google Scholar] [CrossRef]
- Squarzoni, C.; Galgaro, A.; Teza, G.; Acosta, C.A.T.; Pernito, M.A.; Bucceri, N. Terrestrial Laser Scanner and Infrared Thermography in Rock Fall Prone Slope Analysis. Geophysical Research Abstracts 10, EGU2008-A-09254. In Proceedings of the EGU General Assembly 2008, Vienna, Austria, 13–18 April 2008. [Google Scholar]
- Martino, S.; Mazzanti, P. Integrating geomechanical surveys and remote sensing for sea cliff slope stability analysis: The Mt. Pucci case study (Italy). Nat. Hazards Earth Syst. Sci. 2014, 14, 831–848. [Google Scholar] [CrossRef]
- Frodella, W.; Morelli, S.; Pazzi, V. Infrared thermographic surveys for landslide mapping and characterization: The Rotolon DSGD (Northern Italy) case study. Ital. J. Eng. Geol. Environ. 2017, 77–84. [Google Scholar] [CrossRef]
- Mazzanti, P.; Brunetti, A.; Bretschneider, A. A New Approach Based on Terrestrial Remote-Sensing Techniques for Rock Fall Hazard. Assessment. In Modern Technologies for Landslide Monitoring and Prediction; Scaioni, M., Ed.; Springer Natural Hazards; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Collins, B.D.; Stock, G.M. Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat. Geosci. 2016, 9, 295–400. [Google Scholar] [CrossRef]
- Hattewell, P.B.; Farmer, I.W. Fatigue behaviour of rock. Int. J. Rock Mech. Min. Sci. 1973, 10, 1–9. [Google Scholar] [CrossRef]
- Aires-Barros, L.; Graça, R.C.; Velez, A. Dry and wet laboratory tests and thermal fatigue of rocks. Eng. Geol. 1975, 9, 249–265. [Google Scholar] [CrossRef]
- Vargas, J.R.; Castro, J.T.; Amaral, C.; Figueiredo, R.P. On Mechanism for Failure of Some Rock Slopes in Rio de Janeiro, Brasil: Thermal Fatigue? In Proceedings of the 9th International Symposium on Landslides, Rio de Janeiro, Brazil, 28 June–2 July 2004; pp. 1007–1013. [Google Scholar]
- Hall, K. The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology 1999, 31, 47–63. [Google Scholar] [CrossRef]
- Gischig, V.S.; Moore, J.R.; Evans, K.F.; Amann, F.; Loew, S. Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope. J. Geophys. Res. Earth Surf. 2011, 116, 1–18. [Google Scholar] [CrossRef]
- Gischig, V.S.; Moore, J.R.; Evans, K.F.; Amann, F.; Loew, S. Thermomechanical forcing of deep rock slope deformation: 2. the Randa rock slope instability. J. Geophys. Res. Earth Surf. 2011, 116, 1–17. [Google Scholar] [CrossRef]
- Vargas, J.E.; Velloso, R.; Chávez, L.; Gusmão, L.; Amaral, C. On the effect of thermally induced stresses in failures of some rock slopes in Rio de Janeiro, Brazil. Rock Mech. Rock Eng. 2013, 46, 123–134. [Google Scholar] [CrossRef]
- Pasten, C.; García, M.; Cortes, D.D. Physical and numerical modelling of the thermally induced wedging mechanism. Geotech. Lett. 2015, 5, 186–190. [Google Scholar] [CrossRef]
- Greif, V.; Simkova, I.; Vlcko, J. Physical Model of the Mechanism for Thermal Wedging Failure in Rocks. Landslide Sci. Safer Geoenviron. 2014, 2, 45–50. [Google Scholar] [CrossRef]
- Bakun-Mazor, D.; Hatzor, Y.H.; Glaser, S.D.; Santamarina, J.C. Thermally vs. seismically induced block displacements in Masada rock slopes. Int. J. Rock Mech. Ming 2013, 61, 196–211. [Google Scholar] [CrossRef]
- Gunzburger, Y.; Merrien-Soukatchoff, V. Near-surface temperatures and heat balance of bare outcrops exposed to solar radiation. Earth Surf. Process. Landf. 2011, 36, 1577–1589. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. The Use of Infrared Thermography for Porosity Assessment of Intact Rock. Rock Mech. Rock Eng. 2016, 49, 3027–3039. [Google Scholar] [CrossRef]
- Vlcko, J.; Brcek, M.; Greif, V. Deformations Dynamics in Response to Seasonal Temperature Oscillations: An Example from Pravcicka Brana Rock Arch (Czech Republic). Landslide Sci. Safer Geoenviron. 2014, 3, 363–368. [Google Scholar] [CrossRef]
- Greif, V.; Sassa, K.; Fukuoka, H. Failure mechanism in an extremely slow rock slide at Bitchu-Matsuyama castle site (Japan). Landslides 2006, 3, 22–38. [Google Scholar] [CrossRef]
- Vlcko, J.; Greif, V.; Grof, V.; Jezny, M.; Petro, L.; Brcek, M. Rock displacement and thermal expansion study at historic heritage sites in Slovakia. Environ. Geol. 2009, 58, 1727–1740. [Google Scholar] [CrossRef]
- Greif, V.; Brcek, M.; Vlcko, J.; Varilova, Z.; Zvelebil, J. Thermomechanical behavior of Pravcicka Brana Rock Arch (Czech Republic). Landslides 2016. [Google Scholar] [CrossRef]
- Fantini, A.; Fiorucci, M.; Martino, S.; Paciello, A. Investigating Rock Mass Failure Precursors Using a Multi-Sensor Monitoring System: Preliminary Results from a Test-Site (Acuto, Italy). Procedia Eng. 2017, 191, 188–195. [Google Scholar] [CrossRef]
- Fiorucci, M.; Marmoni, G.M.; Martino, S.; Paciello, A. Experimental evidences of thermo-mechanical induced effects on jointed rock masses through infrared thermography and stress-strain monitoring. In Geomechanics and Geodynamics of Rock Masses; Litvinenko, V., Ed.; Taylor & Francis Group: London, UK, 2018; Volume 1, pp. 263–268. ISBN 978-1-138-61645-5. [Google Scholar]
- DeWitt, N. Theory and Practice of Radiation Thermometry; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Meola, C.; Carlomagno, G.M. Recent advances in the use of infrared thermography. Meas. Sci. Technol. 2004, 15, R27–R58. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Ball, M.; Pinkerton, H. Factors affecting the accuracy of thermal imaging cameras in volcanology. J. Geophys. Res. 2006, 111, B11203. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Cuenca, J. Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements. Appl. Opt. 1999, 38, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- Huy Tran, Q.; Han, D.; Kang, C.; Haldar, A.; Huh, J. Effects of Ambient Temperature and Relative Humidity on Subsurface Defect Detection in Concrete Structures by Active Thermal Imaging. Sensors 2017, 17, 1718. [Google Scholar] [CrossRef] [PubMed]
Season | HTRs | CTRs | HTEx | CTEx |
---|---|---|---|---|
°C/h | °C/h | °C | °C | |
Autumn | 3.59 | 2.88 | 9.31 | 8.06 |
Winter | 2.30 | 2.68 | 6.91 | 7.18 |
Spring | 2.75 | 2.02 | 7.44 | 5.41 |
Summer | 1.92 | 1.93 | 5.76 | 5.79 |
Season | HTRs | CTRs | HTEx | CTEx |
---|---|---|---|---|
°C/h | °C/h | °C | °C | |
Autumn | n.a. | 1.75 | n.a. | 5.26 |
Winter | n.a. | 0.54 | n.a. | 1.61 |
Spring | n.a. | 1.25 | n.a. | 3.75 |
Summer | n.a. | 0.65 | n.a. | 1.95 |
Season | Daily Mean Temperature | Daily Thermal Excursion |
---|---|---|
(°C) | (°C) | |
Spring | 25.38 ± 1.97 | 10.88 ± 2.49 |
Summer | 36.0 ± 1.56 | 11.81 ± 2.44 |
Autumn | 20.77 ± 1.33 | 16.7 ± 2.92 |
Winter | 11.34 ± 1.01 | 6.00 ± 1.13 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorucci, M.; Marmoni, G.M.; Martino, S.; Mazzanti, P. Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy). Sensors 2018, 18, 2221. https://doi.org/10.3390/s18072221
Fiorucci M, Marmoni GM, Martino S, Mazzanti P. Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy). Sensors. 2018; 18(7):2221. https://doi.org/10.3390/s18072221
Chicago/Turabian StyleFiorucci, Matteo, Gian Marco Marmoni, Salvatore Martino, and Paolo Mazzanti. 2018. "Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy)" Sensors 18, no. 7: 2221. https://doi.org/10.3390/s18072221
APA StyleFiorucci, M., Marmoni, G. M., Martino, S., & Mazzanti, P. (2018). Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy). Sensors, 18(7), 2221. https://doi.org/10.3390/s18072221