Deceptive Jamming Detection for SAR Based on Cross-Track Interferometry
Abstract
:1. Introduction
2. Principle of Deceptive Jamming Detection
2.1. Geometric Configuration
2.2. Signal Model
2.3. Interferometric Phase Analysis
3. Proposed Detection Scheme
4. Deceptive Jamming Extraction
4.1. SAR Image Co-Registration
4.2. Phase Filtering
4.3. Frequency Detection
5. Experimental Analysis
5.1. Interferometric Phase Analysis
5.2. Extraction Results
6. Conclusions
- (1)
- The interferogram produced by combining two SAR images can identify the position of false targets, and the interferometric phases of the false targets related to the jammer position are close to a constant.
- (2)
- Range frequency detection after phase filtering can effectively extract the false phase in the interferogram. With the proposed jamming detection algorithm, the jammed parts in a SAR image can be extracted.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiaoming, L.S.; Lehner, S.; Rosenthal, W. Investigation of ocean surface wave refraction using TerraSAR-X data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 830–840. [Google Scholar] [CrossRef] [Green Version]
- Kugler, F.; Lee, S.; Hajnsek, I.; Papathanassiou, K.P. Forest height estimation by means of Pol-InSAR data inversion: The role of the vertical wavenumber. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5294–5311. [Google Scholar] [CrossRef]
- Romeiser, R.; Runge, H. Theoretical evaluation of several possible along-track InSAR modes of TerraSAR-X for ocean current measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 21–35. [Google Scholar] [CrossRef]
- Walterscheid, I.; Espeter, T.; Brenner, A.R.; Klare, J.; Ender, J.H.G.; Nies, H.; Wang, R.; Loffeld, O. Bistatic SAR Experiments with PAMIR and TerraSAR-X—Setup, Processing, and Image Results. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3268–3279. [Google Scholar] [CrossRef]
- Romeiser, R.; Suchandt, S.; Runge, H.; Steinbrecher, U.; Grunler, S. First analysis of TerraSAR-X along-track InSAR-derived current fields. IEEE Trans. Geosci. Remote Sens. 2010, 48, 820–829. [Google Scholar] [CrossRef]
- Breit, H.; Fritz, T.; Balss, U.; Lachaise, M.; Niedermeier, A.; Vonavka, M. TerraSAR-X SAR Processing and Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 727–740. [Google Scholar] [CrossRef]
- Liu, Q.; Xing, S.; Wang, X.; Dong, J.; Dai, D.; Li, Y. The Interferometry phase of InSAR coherent jamming with arbitrary waveform modulation. Prog. Electromagn. Res. 2012, 124, 101–118. [Google Scholar] [CrossRef]
- Bo, T.; Weiyan, W. The Study of the Characteristic of InSAR in ECCM. J. Electron. Inf. Technol. 2006, 28, 1809–1811. [Google Scholar]
- Bo, T. Effect of Jammer Motion on Two Channels Cancellation in InSAR EW. Infrared Laser Eng. 2008, 37, 719–722. [Google Scholar]
- Schroer, R. Electronic warfare. IEEE Aerosp. Electron. Syst. Mag. 2003, 18, 49–54. [Google Scholar]
- Li, N.; Zhang, Y. A survey of radar ECM and ECCM. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 1110–1120. [Google Scholar]
- Jia, L.; Jia, X.; Hu, H. Analysis on the Effects of Rebound Jamming on InSAR Imaging. Electr. Inf. Warfare Technol. 2012, 27, 1394–1401. [Google Scholar]
- Akhtar, J. Orthogonal Block Coded ECCM Schemes against Repeat Radar Jammers. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1218–1226. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, D.; Zhang, G. New antivelocity deception jamming technique using pulses with adaptive initial phases. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1290–1300. [Google Scholar] [CrossRef]
- Yang, G.; Li, S.B.; Cao, X.H. SAR counter deception jamming based on radiometric calibration. In Proceedings of the 2009 IET International Radar Conference, Guilin, China, 20–22 April 2009; pp. 1–4. [Google Scholar]
- Zhou, F.; Zhao, B.; Tao, M.; Bai, X.; Chen, B.; Sun, G. A Large Scene Deceptive Jamming Method for Space-Borne SAR. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4486–4495. [Google Scholar] [CrossRef]
- Zhao, B.; Zhou, F.; Tao, M.; Zhang, Z.; Bao, Z. Improved method for synthetic aperture radar scattered wave deception jamming. IET Radar Sonar Navig. 2014, 8, 971–976. [Google Scholar] [CrossRef]
- Zhao, B.; Zhou, F.; Bao, Z. Deception Jamming for Squint SAR Based on Multiple Receivers. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 8, 3988–3998. [Google Scholar] [CrossRef]
- Li, C. The Detection of Deception Jamming Against SAR Based on Dual-Aperture Antenna Cross-Track Interferometry. J. Electron. Inf. Technol. 2007, 29, 1–4. [Google Scholar]
- Wu, Z.; Xu, H.; Li, J.; Liu, W. Research of 3-D Deceptive Interfering Method for Single-pass Spaceborne InSAR. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2834–2846. [Google Scholar] [CrossRef]
- Tang, B.; Guo, K.; Wang, J. The 3D Active Deception Jamming of SAR. Acta Electron. Sin. 2007, 35, 1203–1206. [Google Scholar]
- Tulgar, O.; Arif Ergin, A. Improved Pencil Back-Projection Method with Image Segmentation for Far-Field/Near-Field SAR Imaging and RCS Extraction. IEEE Trans. Antennas Propag. 2015, 63, 2572–2584. [Google Scholar] [CrossRef]
- Wang, F. InSAR Dem Reconstruction Using SRTM Data and ERS-1/2 Interferogram. In Proceedings of the 2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 1–3 June 2012; pp. 1–4. [Google Scholar]
- Stone, H.S.; Orchard, M.T.; Chang, E.C.; Martucci, S.A. A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens. 2002, 39, 2235–2243. [Google Scholar] [CrossRef]
- Lee, J.; Papathanassiou, K.P.; Ainsworth, T.L.; Grunes, M.R.; Reigber, A. A New Technique for Noise Filtering of SAR Interferometric Phase Images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1456–1465. [Google Scholar]
- Kwoh, L.K.; Chang, E.C.; Heng, W.C.A.; Lim, H. DTM generation from 35-day repeat pass ERS-1 interferometry. In Proceedings of the International Symposium on Geoscience and Remote Sensing: Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 2288–2290. [Google Scholar]
- Bamler, R. Interferometric stereo radargrammetry: Absolute height determination from ERS-ENVISAT interferograms. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; Volume 2, pp. 742–745. [Google Scholar]
- Xu, H.; Chen, W.; Liu, W.; Li, S. Phase Statistics for Strong Scatterers in SAR Interferograms. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1966–1970. [Google Scholar]
- Wu, Z.; Xu, H.; Li, J.; Liu, W.; Feng, Q. A Passive Interfering Method for InSAR Based on Circularly Moving Strong Scatterers. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1877–1890. [Google Scholar] [CrossRef]
- Trouvé, E.; Nicolas, J.M.; Maître, H. Improving Phase Unwrapping Techniques by the Use of Local Frequency Estimates. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1963–1972. [Google Scholar] [CrossRef]
- Spagnolini, U. 2-D phase unwrapping and instantaneous frequency estimation. IEEE Trans. Geosci. Remote Sens. 1995, 33, 579–589. [Google Scholar] [CrossRef]
- Suo, Z.; Li, Z.; Bao, Z. A New Strategy to Estimate Local Fringe Frequencies for InSAR Phase Noise Reduction. IEEE Geosci. Remote Sens. Lett. 2010, 7, 771–775. [Google Scholar] [CrossRef]
- Feng, Q.; Xu, H.; Wu, Z.; You, Y.; Liu, W.; Ge, S. Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation. Sensors 2016, 16, 1976. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, Q.; Ding, X.; Zhang, J. An Iterative Goldstein SAR Interferogram Filter. Int. J. Remote Sens. 2011, 33, 3443–3455. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M. TanDEM-X: A satellite formation for high-resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Carrier frequency | 9.6 GHz |
Chirp rate | Hz/s |
Pulse duration | 10 μs |
Sampling frequency | 145 MHz |
Sensor velocity | 7604 m/s |
Squint angle | 0° |
Altitude | 514.8 km |
Baseline length | 200 m |
Baseline inclination | 0° |
Parameter | Value |
---|---|
Pixel number of SAR image | 1,093,016 |
Pixel number of original false target | 58,978 |
Pixel number of detected false target | 61,283 |
Pixel number of correct detection | 57,116 |
Pixel number of error detection | 4167 |
Correct detection rate | 96.84% |
False alarm rate | 0.38% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Xu, H.; Wu, Z.; Liu, W. Deceptive Jamming Detection for SAR Based on Cross-Track Interferometry. Sensors 2018, 18, 2265. https://doi.org/10.3390/s18072265
Feng Q, Xu H, Wu Z, Liu W. Deceptive Jamming Detection for SAR Based on Cross-Track Interferometry. Sensors. 2018; 18(7):2265. https://doi.org/10.3390/s18072265
Chicago/Turabian StyleFeng, Qingqing, Huaping Xu, Zhefeng Wu, and Wei Liu. 2018. "Deceptive Jamming Detection for SAR Based on Cross-Track Interferometry" Sensors 18, no. 7: 2265. https://doi.org/10.3390/s18072265
APA StyleFeng, Q., Xu, H., Wu, Z., & Liu, W. (2018). Deceptive Jamming Detection for SAR Based on Cross-Track Interferometry. Sensors, 18(7), 2265. https://doi.org/10.3390/s18072265