A Hydrogen Gas Sensor Based on TiO2 Nanoparticles on Alumina Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Fabrication of Gas Sensor
2.2. Characterization Method of TiO2-B2O3
2.3. Gas Response Measurement
3. Results and Discussion
3.1. Characterization of TiO2-B2O3 Using TGA, FESEM, EDX and XRD
3.2. Electrical Characteristics of TiO2-B2O3 Gas Sensor
3.3. Performance of TiO2-B2O3 Gas Sensor at Different Operating Temperatures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hübert, T.; Boon-Brett, L.; Palmisano, V.; Bader, M.A. Developments in gas sensor technology for hydrogen safety. Int. J. Hydrog. Energy 2004, 39, 20474–20483. [Google Scholar] [CrossRef]
- Hubert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Hirth, J.P. Effects of Hydrogen on the Properties of Iron and Steel. Metall. Trans. A 1980, 11, 861–890. [Google Scholar] [CrossRef]
- Jones, T.A.; Walsh, P.T. Flammable gas detection—The role of the platinum metals. Platin. Met. Rev. 1988, 32, 50–60. [Google Scholar]
- Lewis, F.A. The Palladium-Hydrogen System a Survey of Hydride Formation and the Effects. Platin. Met. Rev. 1982, 26, 20–27. [Google Scholar]
- Lee, E.; Min, J.; Lee, E.; Noh, J.; Hyoun, J.; Jung, B.; Lee, W. Hydrogen gas sensing performance of Pd–Ni alloy thin films. Thin Solid Films 2010, 519, 880–884. [Google Scholar] [CrossRef]
- Im, Y.; Lee, C.; Vasquez, R.P.; Bangar, M.A.; Myung, N.V.; Menke, E.; Penner, R.M.; Yun, M. Investigation of a Single Pd Nanowire for Use as a Hydrogen Sensor. Small 2006, 2, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Atashbar, M.Z.; Banerji, D.; Singamaneni, S. Room-temperature hydrogen sensor based on palladium nanowires. IEEE Sens. J. 2005, 5, 792–797. [Google Scholar] [CrossRef]
- Yun, M.; Myung, N.V.; Vasquez, R.P.; Lee, C.; Menke, E.; Penner, R.M. Electrochemically grown wires for individually addressable sensor arrays. Nano Lett. 2004, 4, 419–422. [Google Scholar] [CrossRef]
- Xu, T.; Zach, M.P.; Xiao, Z.L.; Rosenmann, D.; Welp, U.; Kwok, W.K.; Crabtree, G.W. Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl. Phys. Lett. 2005, 86, 203104. [Google Scholar] [CrossRef]
- Tien, C.L.; Chen, H.W.; Liu, W.F.; Jyu, S.S.; Lin, S.W.; Lin, Y.S. Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film. Thin Solid Films 2008, 516, 5360–5363. [Google Scholar] [CrossRef]
- Cabrera, A.L. Hydrogen absorption in palladium films sensed by changes in their resistivity. Science 1997, 45, 79–83. [Google Scholar]
- Öztürk, S.; Kılınç, N. Pd thin films on flexible substrate for hydrogen sensor. J. Alloy. Compd. 2016, 674, 179–184. [Google Scholar] [CrossRef]
- Kyun, T.K.; Sang, J.S.; Sung, M.C. Hydrogen gas sensor using Pd nanowires electro-deposited into anodized alumina template. IEEE Sens. J. 2006, 6, 509–513. [Google Scholar] [CrossRef]
- Noh, L.-S.; Lee, J.M. Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection. Sensors 2011, 11, 825–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Sun, Y.; Jiang, C.; Zhang, Y. Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route. Sens. Actuators B Chem. 2017, 242, 15–24. [Google Scholar] [CrossRef]
- Tournier, G.; Pijolat, C. Selective filter for SnO2-based gas sensor: Application to hydrogen trace detection. Sens. Actuators B Chem. 2005, 106, 553–562. [Google Scholar] [CrossRef]
- Shukla, S.; Ludwig, L.; Parrish, C.; Seal, S. Inverse-catalyst-effect observed for nanocrystalline-doped tin oxide sensor at lower operating temperatures. Sens. Actuators B Chem. 2005, 104, 223–231. [Google Scholar] [CrossRef]
- Xue, N.; Zhang, Q.; Zhang, S.; Zong, P.; Yang, F. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers. Sensors 2017, 17, 2351. [Google Scholar] [CrossRef] [PubMed]
- Rashid, T.R.; Phan, D.T.; Chung, G.S. A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape. Sens. Actuators B Chem. 2013, 185, 777–784. [Google Scholar] [CrossRef]
- Phan, D.-T.; Chung, G.-S. Effects of different morphologies of ZnO films on hydrogen sensing properties. J. Electroceram. 2014, 32, 353–360. [Google Scholar] [CrossRef]
- Anand, K.; Singh, O.; Pal, M.; Kaur, J.; Chand, R. Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B Chem. 2014, 195, 409–415. [Google Scholar] [CrossRef]
- Cardoza-Contreras, M.N.; Romo-Herrera, J.M.; Ríos, L.A.; García-Gutiérrez, R.; Zepeda, T.A.; Contreras, O.E. Single ZnO Nanowire-based gas sensors to detect low concentrations of hydrogen. Sensors 2015, 15, 30539–30544. [Google Scholar] [CrossRef] [PubMed]
- Postica, V.; Reimer, T.; Lazari, E.; Ababii, N.; Shishiyanu, S.; Railean, S.; Kaidas, V.; Kaps, S.; Synthesis, A.; Nanostructured, U.T. Sensing Properties of Ultra-Thin TiO2 Nanostructured Films Based Sensors. In Proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Moldova, 23–26 September 2015. [Google Scholar]
- Krško, O.; Plecenik, T.; Roch, T.; Grančič, B.; Satrapinskyy, L.; Truchlý, M.; Ďurina, P.; Gregor, M.; Kúš, P.; Plecenik, A. Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens. Actuators B Chem. 2017, 240, 1058–1065. [Google Scholar] [CrossRef]
- Zhang, M.L.; Ning, T.; Zhang, S.; Li, Z.; Cao, Q.; Yuan, Z. Response time and mechanism of Pd modified TiO2 gas sensor. Mater. Sci. Semicond. Process. 2014, 20, 375–380. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Z.; Huang, P.; Chen, X.; Fu, X.; Dai, W. Comparative study of two different TiO2 film sensors on response to H2 under UV light and room temperature. Sensors 2016, 16, 1249. [Google Scholar] [CrossRef] [PubMed]
- Krško, O.; Plecenik, T.; Moško, M.; Haidry, A.A.; Ďurina, P.; Truchlý, M.; Grančič, B.; Gregor, M.; Roch, T.; Satrapinskyy, L.; et al. Highly Sensitive Hydrogen Semiconductor Gas Sensor Operating at Room Temperature. Procedia Eng. 2015, 120, 618–622. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, Z.; Song, J.; Zheng, C. Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuators B Chem. 2010, 148, 87–92. [Google Scholar] [CrossRef]
- Alev, O.; Erdem, Ş.; Necmettin, K.; Ziya, Z. Gas sensor application of hydrothermally growth TiO2 nanorods. Procedia Eng. 2015, 120, 1162–1165. [Google Scholar] [CrossRef]
- Ippolito, S.J.; Kandasamy, S.; Kalantar-Zadeh, K.; Wlodarski, W. Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts. Sens. Actuators B Chem. 2005, 108, 154–158. [Google Scholar] [CrossRef]
- Kamal, T. High performance NiO decorated graphene as a potential H2 gas sensor. J. Alloy. Compd. 2017, 729, 1058–1063. [Google Scholar] [CrossRef]
- Dhall, S.; Jaggi, N.; Nathawat, R. Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A Phys. 2013, 201, 321–327. [Google Scholar] [CrossRef]
- Dhall, S.; Jaggi, N. Highly dispersed platinum sputtered multiwall carbon nanotubes based hydrogen gas sensor at room temperature. Sens. Actuators A Phys. 2015, 224, 50–56. [Google Scholar] [CrossRef]
- Wongchoosuk, C.; Wisitsoraat, A.; Phokharatkul, D.; Tuantranont, A.; Kerdcharoen, T. Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing. Sensors 2010, 10, 7705–7715. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.G.; Kim, D.H.; Seo, D.K.; Kim, T.; Im, H.U.; Lee, H.M.; Yoo, J.B.; Hong, S.H.; Kang, T.J.; Kim, Y.H. Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B Chem. 2012, 169, 387–392. [Google Scholar] [CrossRef]
- Phan, D.T.; Chung, G.S. Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. Int. J. Hydrog. Energy 2014, 39, 620–629. [Google Scholar] [CrossRef]
- Kumar, R.; Malik, S.; Mehta, B.R. Interface induced hydrogen sensing in Pd nanoparticle/graphene composite layers. Sens. Actuators B Chem. 2015, 209, 919–926. [Google Scholar] [CrossRef]
- Eom, N.S.A.; Cho, H.-B.; Song, Y.; Lee, W.; Sekino, T.; Choa, Y.-H. Room-Temperature H2 Gas Sensing Characterization Solution Dropping Method. Sensors 2017, 17, 2750. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.A.; Wilson, N.R.; Covington, J.A. Pd-doped reduced graphene oxide sensing films for H2 detection. Sens. Actuators B Chem. 2013, 183, 478–487. [Google Scholar] [CrossRef]
- Drewniak, S.; Muzyka, R.; Stolarczyk, A.; Pustelny, T.; Kotyczka-Morańska, M.; Setkiewicz, M. Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors. Sensors 2016, 16, 103. [Google Scholar] [CrossRef] [PubMed]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Hill, E.W.; Vijayaragahvan, A.; Novoselov, K. Graphene sensors. IEEE Sens. J. 2011, 11, 3161–3170. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, P.; Li, J.; Wang, L.; O’Neill, Z.; Estrela, W. Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors. Sensors 2010, 10, 5133–5159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.N. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: Focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 2011, 4, 35–65. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Ong, K.G.; Grimes, C.A. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films 2006, 496, 42–48. [Google Scholar] [CrossRef]
- Li, Z.; Ding, D.; Ning, C. P-Type hydrogen sensing with Al- and V-doped TiO2 nanostructures. Nanoscale Res. Lett. 2013, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Şennik, E.; Çolak, Z.; Kilinç, N.; Öztürk, Z.Z. Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor. Int. J. Hydrog. Energy 2010, 35, 4420–4427. [Google Scholar] [CrossRef]
- Abadi, M.H.S.; Hamidon, M.N.; Shaari, A.H.; Abdullah, N.; Wagiran, R.; Misro, N. Nanocrystalline SnO2-Pt Thick Film Gas Sensor for Air Pollution Applications. Sens. Transducers 2011, 125, 76–88. [Google Scholar]
- Ehsani, M.; Hamidon, M.N.; Member, S.; Toudeshki, A.; Abadi, M.H.S.; Rezaeian, S. CO2 Gas Sensing Properties of Screen-Printed La2O3/SnO2 Thick Film. IEEE Sens. J. 2016, 16, 6839–6845. [Google Scholar] [CrossRef]
- Sheini, N.A.; Rohani, M. Ag-doped titanium dioxide gas sensor. IOP Conf. Ser. Mater. Sci. Eng. 2016, 108, 012033. [Google Scholar] [CrossRef] [Green Version]
- Saidi, W.; Hfaidh, N.; Rasheed, M.; Girtan, M.; Megriche, A.; el Maaoui, M. Effect of B2O3 addition on optical and structural properties of TiO2 as a new blocking layer for multiple dye sensitive solar cell application (DSSC). RSC Adv. 2016, 6, 68819–68826. [Google Scholar] [CrossRef] [Green Version]
- Garner, W.E.; Reeves, L.W. The Thermal Decomposition of Silver Oxide. Trans. Faraday Soc. 1954, 50, 254–260. [Google Scholar] [CrossRef]
- Gu, H.; Wang, Z.; Hu, Y. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors 2012, 12, 5517–5550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaalan, N.M.; Rashad, M.; Abdel-Rahim, M.A. Repeatability of indium oxide gas sensors for detecting methane at low temperature. Mater. Sci. Semicond. Process. 2016, 56, 260–264. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, W.; Peng, S.; Su, X. Nano-tin oxide gas sensor detection characteristic for hydrocarbon gases dissolved in transformer oil. In Proceedings of the 2012 International Conference on High Voltage Engineering and Application, Shanghai, China, 17–20 September 2012; pp. 384–387. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Chachuli, S.A.; Hamidon, M.N.; Mamat, M.S.; Ertugrul, M.; Abdullah, N.H. A Hydrogen Gas Sensor Based on TiO2 Nanoparticles on Alumina Substrate. Sensors 2018, 18, 2483. https://doi.org/10.3390/s18082483
Mohd Chachuli SA, Hamidon MN, Mamat MS, Ertugrul M, Abdullah NH. A Hydrogen Gas Sensor Based on TiO2 Nanoparticles on Alumina Substrate. Sensors. 2018; 18(8):2483. https://doi.org/10.3390/s18082483
Chicago/Turabian StyleMohd Chachuli, Siti Amaniah, Mohd Nizar Hamidon, Md. Shuhazlly Mamat, Mehmet Ertugrul, and Nor Hapishah Abdullah. 2018. "A Hydrogen Gas Sensor Based on TiO2 Nanoparticles on Alumina Substrate" Sensors 18, no. 8: 2483. https://doi.org/10.3390/s18082483
APA StyleMohd Chachuli, S. A., Hamidon, M. N., Mamat, M. S., Ertugrul, M., & Abdullah, N. H. (2018). A Hydrogen Gas Sensor Based on TiO2 Nanoparticles on Alumina Substrate. Sensors, 18(8), 2483. https://doi.org/10.3390/s18082483